Submitted:
07 November 2024
Posted:
08 November 2024
You are already at the latest version
Abstract
Biomarker-based tests are capable of predicting one’s biological age and mortality risk. To complement the suite of biomarker-based measurements, physical and cognitive performance tests can also improve the predictability of these measurement panels. Importantly, these measurements can be administered quite non-invasively and inexpensively, and training programs can be developed to improve parameters in aging. This will be a vital approach in improving the health of the aged and preventing massive healthcare expenditures at the end of life, which may become a serious fiscal issue if not addressed. This review touches on the ways people can measure function, the models that predict mortality based on this data, and the interventions that seek to improve these measures, subsequently extending lifespan and reducing mortality risk (as primary endpoints) and enhancing function and independence as secondary endpoints.
Keywords:
1. Introduction
2. Interventions for Improving Aging
| . | Physical marker | Prediction (Association with lifespan or health outcomes) |
|
|---|---|---|---|
| 1. | Treadmill stress test | Cardiovascular fitness | All cause mortality [1,2] |
| 2. | Sports participation | Overall physical activity | Lifespan [3] |
| 3. | Persistent vigorous activity | Overall physical activity | All cause mortality [4] |
| 4. | Physical activity energy expenditure | Overall physical activity | All cause mortality [5] |
| 5. | Leisure time physical activity | Overall physical activity | All cause mortality [6] |
| 6. | Grip strength | Strength | All cause mortality [7,8,9] DunedinPoAm, PhenoAge and GrimAge clocks [10] |
| 7. | Sitting rise test | Agility | All cause mortality [11] |
| 8. | Gait speed | Agility, Cardiovascular fitness | All cause mortality [9] |
| 9. | Leg strength | Strength, muscle mass | All cause mortality [9] |
| 10. | Forced Expiratory Volume | Respiratory fitness | All cause mortality [9] |
| 11. | VO2 max | Cardiovascular fitness | All cause mortality [9,12] |
| Test | Predictability |
| Cognitive Function | Age [13] |
| Rate of cognitive decline | Mortality risk [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] Cardiovascular mortality [37] |
| Motoric Cognitive Function | Mortality Risk[38] |
2.1. Metabolism
2.2. Endurance
2.3. Cognition
2.4. Cardiovascular and Pulmonary Health
2.5. Musculoskeletal (Strength and Stability)
2.6. Psychosocial
| Training Type | Trend (absent training) | System | Associated tests and biomarkers | Training | Adaptations |
| Strength Training | Sarcopenia, muscle loss, bone loss | Musculoskeltal | Grip Strength[126] | Weightlifting | Increase in muscle mass and bone density |
| Endurance training | Lower VO2 max | Metabolic, cardiopulmonary | Resting Metabolic Rate, Creatine phosphokinase[127] |
Running, swimming, walking, cycling, cross-country skiing, hiking, etc. | Increased mitochondrial size, greater ability to metabolize fat, increased (heart) stroke volume |
| Balance training | Poorer coordination | Musculoskeletal, nervous | Self-selected gait velocity [128], Chair rise test (timed 5 chair rises), Tandem standing and walking, timed up and go test, clinical gait analysis with special focus on regularity, mechanography [129] | Yoga | Neuromuscular control [130] |
| Flexibility | Decrease in joint flexion[131,132] | Musculoskeletal, tendons, fascia | Flexibility tests: Flexindex[132] | Yoga, Pilates | Improved flexibility and stability |
| Preservation of genomic integrity | Accumulation of mutations[133], accumulation of methylation, higher cancer rates[134] | Genomic Integrity | Telomere Length[135], Methylation level [136] |
Low inflammation practices, avoiding carcinogenic exposures, possibly fasting[137] | Possible improved immune surveillance [138] |
| Cognition | Impairment on task switching[139], working and long-term memory [139] | Nervous | Cognitive tests[140]: Mini-Mental State Examination, Isaacs Set Test, Benton Visual Retention Test, Digit Symbol Substitution Test[141], Combined panel[142] |
Equivocal evidence for transfer effects of cognitive training[143], Combined program (exercise, brain training and lecture)[144], Reading[145], Hobbies[146], Multilingualism[147], Dance[148], Social Activity [149], meditation[150] |
Increased BDNF and neurogenesis[151]preservation of white matter |
3. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whelton, S.P.; McAuley, P.A.; Dardari, Z.; Orimoloye, O.A.; Michos, E.D.; Brawner, C.A.; Ehrman, J.K.; Keteyian, S.J.; Blaha, M.J.; Al-Mallah, M.H. Fitness and Mortality Among Persons 70 Years and Older Across the Spectrum of Cardiovascular Disease Risk Factor Burden: The FIT Project. Mayo Clin Proc 2021, 96, 2376–2385. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.; Faselis, C.; Samuel, I.B.H.; Pittaras, A.; Doumas, M.; Murphy, R.; Heimall, M.S.; Sui, X.; Zhang, J.; Myers, J. Cardiorespiratory Fitness and Mortality Risk Across the Spectra of Age, Race, and Sex. Journal of the American College of Cardiology 2022, 80, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Altulea, A.; Rutten, M.G.S.; Verdijk, L.B.; Demaria, M. Sport and Longevity: An Observational Study of International Athletes. Geroscience 2024. [Google Scholar] [CrossRef] [PubMed]
- Karvinen, S.; Waller, K.; Silvennoinen, M.; Koch, L.G.; Britton, S.L.; Kaprio, J.; Kainulainen, H.; Kujala, U.M. Physical Activity in Adulthood: Genes and Mortality. Sci Rep 2015, 5, 18259. [Google Scholar] [CrossRef]
- Mok, A.; Khaw, K.-T.; Luben, R.; Wareham, N.; Brage, S. Physical Activity Trajectories and Mortality: Population Based Cohort Study. BMJ 2019, 365, l2323. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Coughlan, D.; Kelly, S.P.; Keadle, S.K.; Cook, M.B.; Carlson, S.A.; Fulton, J.E.; Matthews, C.E. Association of Leisure-Time Physical Activity Across the Adult Life Course With All-Cause and Cause-Specific Mortality. JAMA Network Open 2019, 2, e190355. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, W.; Liu, T.; Zhang, D. Association of Grip Strength With Risk of All-Cause Mortality, Cardiovascular Diseases, and Cancer in Community-Dwelling Populations: A Meta-Analysis of Prospective Cohort Studies. J Am Med Dir Assoc 2017, 18, 551.e17–551.e35. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clinical Interventions in Aging 2019, 14, 1681. [Google Scholar] [CrossRef]
- McGreevy, K.M.; Radak, Z.; Torma, F.; Jokai, M.; Lu, A.T.; Belsky, D.W.; Binder, A.; Marioni, R.E.; Ferrucci, L.; Pośpiech, E.; et al. DNAmFitAge: Biological Age Indicator Incorporating Physical Fitness. Aging 2023, 15, 3904–3938. [Google Scholar] [CrossRef]
- Peterson, M.D.; Collins, S.; Meier, H.C.S.; Brahmsteadt, A.; Faul, J.D. Grip Strength Is Inversely Associated with DNA Methylation Age Acceleration. Journal of Cachexia, Sarcopenia and Muscle 2023, 14, 108–115. [Google Scholar] [CrossRef]
- Brito, L.B.B. de; Ricardo, D.R.; Araújo, D.S.M.S. de; Ramos, P.S.; Myers, J.; Araújo, C.G.S. de Ability to Sit and Rise from the Floor as a Predictor of All-Cause Mortality. Eur J Prev Cardiol 2014, 21, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Duizer, D. Cardiorespiratory Fitness Assessment and Treatment for Health Span and Lifespan. CAND Journal 2020, 27, 22–25. [Google Scholar] [CrossRef]
- Statsenko, Y.; Habuza, T.; Charykova, I.; Gorkom, K.N.-V.; Zaki, N.; Almansoori, T.M.; Baylis, G.; Ljubisavljevic, M.; Belghali, M. Predicting Age From Behavioral Test Performance for Screening Early Onset of Cognitive Decline. Front. Aging Neurosci. 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Aichele, S.; Rabbitt, P.; Ghisletta, P. Life Span Decrements in Fluid Intelligence and Processing Speed Predict Mortality Risk. Psychol Aging 2015, 30, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Schupf, N.; Tang, M.-X.; Albert, S.M.; Costa, R.; Andrews, H.; Lee, J.H.; Mayeux, R. Decline in Cognitive and Functional Skills Increases Mortality Risk in Nondemented Elderly. Neurology 2005, 65, 1218–1226. [Google Scholar] [CrossRef]
- Sachs, G.A.; Carter, R.; Holtz, L.R.; Smith, F.; Stump, T.E.; Tu, W.; Callahan, C.M. Cognitive Impairment: An Independent Predictor of Excess Mortality. Ann Intern Med 2011, 155, 300–308. [Google Scholar] [CrossRef]
- Stump, T.E.; Callahan, C.M.; Hendrie, H.C. Cognitive Impairment and Mortality in Older Primary Care Patients. Journal of the American Geriatrics Society 2001, 49, 934–940. [Google Scholar] [CrossRef]
- LIU, I.Y.; LACROIX, A.Z.; WHITE, L.R.; KITTNER, S.J.; WOLF, P.A. COGNITIVE IMPAIRMENT AND MORTALITY: A STUDY OF POSSIBLE CONFOUNDERS. American Journal of Epidemiology 1990, 132, 136–143. [Google Scholar] [CrossRef]
- van Gelder, B.M.; Tijhuis, M.A.R.; Kalmijn, S.; Giampaoli, S.; Kromhout, D. Decline in Cognitive Functioning Is Associated with a Higher Mortality Risk. Neuroepidemiology 2007, 28, 93–100. [Google Scholar] [CrossRef]
- Assari, S. Cognitive Test Score and 25-Year Mortality Risk; Does Race Matter? Journal of Medical Research and Innovation 2020, 4, e000213. [Google Scholar] [CrossRef]
- Pavlik, V.N.; de Moraes, S.A.; Szklo, M.; Knopman, D.S.; Mosley Jr., T.H.; Hyman, D.J. Relation between Cognitive Function and Mortality in Middle-Aged Adults: The Atherosclerosis Risk in Communities Study. American Journal of Epidemiology 2003, 157, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.R.; Martyn, C.N.; Cooper, C. Cognitive Impairment and Mortality in a Cohort of Elderly People. BMJ 1996, 312, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Griva, K.; Stygall, J.; Hankins, M.; Davenport, A.; Harrison, M.; Newman, S.P. Cognitive Impairment and 7-Year Mortality in Dialysis Patients. American Journal of Kidney Diseases 2010, 56, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.W.; Wolf, M.S.; Feinglass, J.; Thompson, J.A. Health Literacy, Cognitive Abilities, and Mortality Among Elderly Persons. J GEN INTERN MED 2008, 23, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Frith, E.; Addoh, O.; Mann, J.R.; Windham, B.G.; Loprinzi, P.D. Individual and Combined Associations of Cognitive and Mobility Limitations on Mortality Risk in Older Adults. Mayo Clinic Proceedings 2017, 92, 1494–1501. [Google Scholar] [CrossRef]
- Bosworth, H.B.; Schaie, K.W.; Willis, S.L. Cognitive and Sociodemographic Risk Factors for Mortality in the Seattle Longitudinal Study. The Journals of Gerontology: Series B 1999, 54B, P273–P282. [Google Scholar] [CrossRef]
- Shipley, B.A.; Der, G.; Taylor, M.D.; Deary, I.J. Cognition and All-Cause Mortality Across the Entire Adult Age Range: Health and Lifestyle Survey. Psychosomatic Medicine 2006, 68, 17. [Google Scholar] [CrossRef]
- Shipley, B.A.; Der, G.; Taylor, M.D.; Deary, I.J. Cognition and Mortality from the Major Causes of Death: The Health and Lifestyle Survey. Journal of Psychosomatic Research 2008, 65, 143–152. [Google Scholar] [CrossRef]
- Holm, H.; Bachus, E.; Jujic, A.; Nilsson, E.D.; Wadström, B.; Molvin, J.; Minthon, L.; Fedorowski, A.; Nägga, K.; Magnusson, M. Cognitive Test Results Are Associated with Mortality and Rehospitalization in Heart Failure: Swedish Prospective Cohort Study. ESC Heart Failure 2020, 7, 2948–2955. [Google Scholar] [CrossRef]
- Perna, L.; Wahl, H.-W.; Mons, U.; Saum, K.-U.; Holleczek, B.; Brenner, H. Cognitive Impairment, All-Cause and Cause-Specific Mortality among Non-Demented Older Adults. Age and Ageing 2015, 44, 445–451. [Google Scholar] [CrossRef]
- Drew, D.A.; Weiner, D.E.; Tighiouart, H.; Scott, T.; Lou, K.; Kantor, A.; Fan, L.; Strom, J.A.; Singh, A.K.; Sarnak, M.J. Cognitive Function and All-Cause Mortality in Maintenance Hemodialysis Patients. American Journal of Kidney Diseases 2015, 65, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.A.; Luben, R.; Dalzell, N.; Moore, S.; Hogervorst, E.; Matthews, F.E.; Wareham, N.; Brayne, C.; Khaw, K.-T. Understanding the Relationship between Cognition and Death: A within Cohort Examination of Cognitive Measures and Mortality. Eur J Epidemiol 2018, 33, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- Kelman, H.R.; Thomas, C.; Kennedy, G.J.; Cheng, J. Cognitive Impairment and Mortality in Older Community Residents. Am J Public Health 1994, 84, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Dewey, M.E.; Saz, P. Dementia, Cognitive Impairment and Mortality in Persons Aged 65 and over Living in the Community: A Systematic Review of the Literature. International Journal of Geriatric Psychiatry 2001, 16, 751–761. [Google Scholar] [CrossRef]
- Wilson, R.S.; Aggarwal, N.T.; Barnes, L.L.; Bienias, J.L.; Mendes de Leon, C.F.; Evans, D.A. Biracial Population Study of Mortality in Mild Cognitive Impairment and Alzheimer Disease. Arch Neurol 2009, 66, 767–772. [Google Scholar] [CrossRef]
- Gussekloo, J.; Westendorp, R.G.J.; Remarque, E.J.; Lagaay, A.M.; Heeren, T.J.; Knook, D.L. Impact of Mild Cognitive Impairment on Survival in Very Elderly People: Cohort Study. BMJ 1997, 315, 1053–1054. [Google Scholar] [CrossRef]
- O’Donnell, M.; Teo, K.; Gao, P.; Anderson, C.; Sleight, P.; Dans, A.; Marzona, I.; Bosch, J.; Probstfield, J.; Yusuf, S. Cognitive Impairment and Risk of Cardiovascular Events and Mortality. European Heart Journal 2012, 33, 1777–1786. [Google Scholar] [CrossRef]
- Ayers, E.; Verghese, J. Motoric Cognitive Risk Syndrome and Risk of Mortality in Older Adults. Alzheimer’s & Dementia 2016, 12, 556–564. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Lee, J.T.; Oldenburg, B.; Heusden, A. van; Haregu, T.N.; Wang, H. The Prevalence of Metabolic Disease Multimorbidity and Its Associations With Spending and Health Outcomes in Middle-Aged and Elderly Chinese Adults. Frontiers in Public Health 2021, 9. [Google Scholar] [CrossRef]
- Dunbar, J.A.; Reddy, P.; Davis-Lameloise, N.; Philpot, B.; Laatikainen, T.; Kilkkinen, A.; Bunker, S.J.; Best, J.D.; Vartiainen, E.; Kai Lo, S.; et al. Depression: An Important Comorbidity With Metabolic Syndrome in a General Population. Diabetes Care 2008, 31, 2368–2373. [Google Scholar] [CrossRef]
- Yang, Y.; Mauldin, P.D.; Ebeling, M.; Hulsey, T.C.; Liu, B.; Thomas, M.B.; Camp, E.R.; Esnaola, N.F. Effect of Metabolic Syndrome and Its Components on Recurrence and Survival in Colon Cancer Patients. Cancer 2013, 119, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Bitton-Worms, K.; LeRoith, D. The Link between the Metabolic Syndrome and Cancer. International journal of biological sciences 2011, 7, 1003. [Google Scholar] [CrossRef]
- Pal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild Cognitive Impairment and Progression to Dementia in People with Diabetes, Prediabetes and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Soc Psychiatry Psychiatr Epidemiol 2018, 53, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, A.; Darin-Mattsson, A.; Skoog, J.; Rydén, L.; Hadarsson-Bodin, T.; Kern, S.; Rydberg Sterner, T.; Shang, Y.; Zettergren, A.; Westman, E. Metabolic Syndrome Is Associated with Poor Cognition: A Population-Based Study of 70-Year-Old Adults without Dementia. The Journals of Gerontology: Series A 2021, 76, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Schnabel, L.; Buscail, C.; Sabate, J.-M.; Bouchoucha, M.; Kesse-Guyot, E.; Allès, B.; Touvier, M.; Monteiro, C.A.; Hercberg, S.; Benamouzig, R.; et al. Association Between Ultra-Processed Food Consumption and Functional Gastrointestinal Disorders: Results From the French NutriNet-Santé Cohort. Official journal of the American College of Gastroenterology | ACG 2018, 113, 1217. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of Ultra-Processed Foods and Health Outcomes: A Systematic Review of Epidemiological Studies. Nutrition Journal 2020, 19, 86. [Google Scholar] [CrossRef]
- Magalhães, V.; Severo, M.; Correia, D.; Torres, D.; Miranda, R.C. de; Rauber, F.; Levy, R.; Rodrigues, S.; Lopes, C. Associated Factors to the Consumption of Ultra-Processed Foods and Its Relation with Dietary Sources in Portugal. Journal of Nutritional Science 2021, 10, e89. [Google Scholar] [CrossRef]
- Lawrence, M.A.; Baker, P.I. Ultra-Processed Food and Adverse Health Outcomes. BMJ 2019, 365, l2289. [Google Scholar] [CrossRef]
- Poehlman, E.T.; Arciero, P.J.; Goran, M.I. Endurance Exercise in Aging Humans: Effects on Energy Metabolism. Exercise and Sport Sciences Reviews 1994, 22, 251. [Google Scholar] [CrossRef]
- Palmer, A.K.; Jensen, M.D. Metabolic Changes in Aging Humans: Current Evidence and Therapeutic Strategies. J Clin Invest 2022, 132. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.R.; Bulun, S.E. Estrogen Production and Action. Journal of the American Academy of Dermatology 2001, 45, S116–S124. [Google Scholar] [CrossRef] [PubMed]
- Angoff, R.; Himali, J.J.; Maillard, P.; Aparicio, H.J.; Vasan, R.S.; Seshadri, S.; Beiser, A.S.; Tsao, C.W. Relations of Metabolic Health and Obesity to Brain Aging in Young to Middle-Aged Adults. Journal of the American Heart Association 2022, 11, e022107. [Google Scholar] [CrossRef] [PubMed]
- Facchini, F.S.; Hua, N.; Abbasi, F.; Reaven, G.M. Insulin Resistance as a Predictor of Age-Related Diseases. The Journal of Clinical Endocrinology & Metabolism 2001, 86, 3574–3578. [Google Scholar] [CrossRef]
- Paolisso, G.; Gambardella, A.; Ammendola, S.; D’Amore, A.; Balbi, V.; Varricchio, M.; D’Onofrio, F. Glucose Tolerance and Insulin Action in Healthy Centenarians. Am J Physiol 1996, 270, E890–894. [Google Scholar] [CrossRef]
- Lanza, I.R.; Short, D.K.; Short, K.R.; Raghavakaimal, S.; Basu, R.; Joyner, M.J.; McConnell, J.P.; Nair, K.S. Endurance Exercise as a Countermeasure for Aging. Diabetes 2008, 57, 2933–2942. [Google Scholar] [CrossRef]
- Resnick, H.E.; Carter, E.A.; Aloia, M.; Phillips, B. Cross-Sectional Relationship of Reported Fatigue to Obesity, Diet, and Physical Activity: Results From the Third National Health and Nutrition Examination Survey. Journal of Clinical Sleep Medicine 2006, 02, 163–169. [Google Scholar] [CrossRef]
- Hobday, R.A.; Thomas, S.; O’Donovan, A.; Murphy, M.; Pinching, A.J. Dietary Intervention in Chronic Fatigue Syndrome. Journal of Human Nutrition and Dietetics 2008, 21, 141–149. [Google Scholar] [CrossRef]
- Guest, D.D.; Evans, E.M.; Rogers, L.Q. Diet Components Associated with Perceived Fatigue in Breast Cancer Survivors: Diet, Fatigue and Breast Cancer. European Journal of Cancer Care 2013, 22, 51–59. [Google Scholar] [CrossRef]
- Chase, E.; Chen, V.; Martin, K.; Lane, M.; Wooliscroft, L.; Adams, C.; Rice, J.; Silbermann, E.; Hollen, C.; Fryman, A.; et al. A Low-Fat Diet Improves Fatigue in Multiple Sclerosis: Results from a Randomized Controlled Trial. Mult Scler 2023, 29, 1659–1675. [Google Scholar] [CrossRef] [PubMed]
- Pommerich, U.M.; Brincks, J.; Christensen, M.E. Is There an Effect of Dietary Intake on MS-Related Fatigue? – A Systematic Literature Review. Multiple Sclerosis and Related Disorders 2018, 25, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Bitarafan, S.; Harirchian, M.-H.; Nafissi, S.; Sahraian, M.-A.; Togha, M.; Siassi, F.; Saedisomeolia, A.; Alipour, E.; Mohammadpour, N.; Chamary, M.; et al. Dietary Intake of Nutrients and Its Correlation with Fatigue in Multiple Sclerosis Patients. Iran J Neurol 2014, 13, 28–32. [Google Scholar]
- Albrechtsen, M.T.; Langeskov-Christensen, M.; Jørgensen, M.L.K.; Dalgas, U.; Hansen, M. Is Diet Associated with Physical Capacity and Fatigue in Persons with Multiple Sclerosis? –Results from a Pilot Study. Multiple Sclerosis and Related Disorders 2020, 40, 101921. [Google Scholar] [CrossRef] [PubMed]
- Snetselaar, L.G.; Cheek, J.J.; Fox, S.S.; Healy, H.S.; Schweizer, M.L.; Bao, W.; Kamholz, J.; Titcomb, T.J. Efficacy of Diet on Fatigue and Quality of Life in Multiple Sclerosis. Neurology 2023, 100, e357–e366. [Google Scholar] [CrossRef] [PubMed]
- Mousavi-Shirazi-Fard, Z.; Mazloom, Z.; Izadi, S.; Fararouei, M. The Effects of Modified Anti-Inflammatory Diet on Fatigue, Quality of Life, and Inflammatory Biomarkers in Relapsing-Remitting Multiple Sclerosis Patients: A Randomized Clinical Trial. International Journal of Neuroscience 2021, 131, 657–665. [Google Scholar] [CrossRef]
- Campagnolo, N.; Johnston, S.; Collatz, A.; Staines, D.; Marshall-Gradisnik, S. Dietary and Nutrition Interventions for the Therapeutic Treatment of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Systematic Review. Journal of Human Nutrition and Dietetics 2017, 30, 247–259. [Google Scholar] [CrossRef]
- Maric, D.; Brkic, S.; Mikic, A.N.; Tomic, S.; Cebovic, T.; Turkulov, V. Multivitamin Mineral Supplementation in Patients with Chronic Fatigue Syndrome. Medical science monitor: international medical journal of experimental and clinical research 2014, 20, 47. [Google Scholar]
- Bo, S.; Pisu, E. Role of Dietary Magnesium in Cardiovascular Disease Prevention, Insulin Sensitivity and Diabetes. Current Opinion in Lipidology 2008, 19, 50. [Google Scholar] [CrossRef]
- Kleckner, A.S.; Reschke, J.E.; Kleckner, I.R.; Magnuson, A.; Amitrano, A.M.; Culakova, E.; Shayne, M.; Netherby-Winslow, C.S.; Czap, S.; Janelsins, M.C.; et al. The Effects of a Mediterranean Diet Intervention on Cancer-Related Fatigue for Patients Undergoing Chemotherapy: A Pilot Randomized Controlled Trial. Cancers 2022, 14, 4202. [Google Scholar] [CrossRef]
- Stobäus, N.; Müller, M.J.; Küpferling, S.; Schulzke, J.-D.; Norman, K. Low Recent Protein Intake Predicts Cancer-Related Fatigue and Increased Mortality in Patients with Advanced Tumor Disease Undergoing Chemotherapy. Nutrition and Cancer 2015, 67, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Gramignano, G.; Lusso, M.R.; Madeddu, C.; Massa, E.; Serpe, R.; Deiana, L.; Lamonica, G.; Dessì, M.; Spiga, C.; Astara, G.; et al. Efficacy of L-Carnitine Administration on Fatigue, Nutritional Status, Oxidative Stress, and Related Quality of Life in 12 Advanced Cancer Patients Undergoing Anticancer Therapy. Nutrition 2006, 22, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Teleni, L.; Opie, R.S.; Kelly, J.; Marshall, S.; Itsiopoulos, C.; Isenring, E. Efficacy and Effectiveness of Carnitine Supplementation for Cancer-Related Fatigue: A Systematic Literature Review and Meta-Analysis. Nutrients 2017, 9, 1224. [Google Scholar] [CrossRef] [PubMed]
- Alfano, C.M.; Imayama, I.; Neuhouser, M.L.; Kiecolt-Glaser, J.K.; Smith, A.W.; Meeske, K.; McTiernan, A.; Bernstein, L.; Baumgartner, K.B.; Ulrich, C.M.; et al. Fatigue, Inflammation, and ω-3 and ω-6 Fatty Acid Intake Among Breast Cancer Survivors. JCO 2012, 30, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Barton, D.L.; Soori, G.S.; Bauer, B.A.; Sloan, J.A.; Johnson, P.A.; Figueras, C.; Duane, S.; Mattar, B.; Liu, H.; Atherton, P.J.; et al. Pilot Study of Panax Quinquefolius (American Ginseng) to Improve Cancer-Related Fatigue: A Randomized, Double-Blind, Dose-Finding Evaluation: NCCTG Trial N03CA. Support Care Cancer 2010, 18, 179–187. [Google Scholar] [CrossRef]
- Barton, D.L.; Liu, H.; Dakhil, S.R.; Linquist, B.; Sloan, J.A.; Nichols, C.R.; McGinn, T.W.; Stella, P.J.; Seeger, G.R.; Sood, A.; et al. Wisconsin Ginseng ( Panax Quinquefolius ) to Improve Cancer-Related Fatigue: A Randomized, Double-Blind Trial, N07C2. JNCI: Journal of the National Cancer Institute 2013, 105, 1230–1238. [Google Scholar] [CrossRef]
- Liu, C.-H.; Tsai, C.-H.; Li, T.-C.; Yang, Y.-W.; Huang, W.-S.; Lu, M.-K.; Tseng, C.-H.; Huang, H.-C.; Chen, K.-F.; Hsu, T.-S.; et al. Effects of the Traditional Chinese Herb Astragalus Membranaceus in Patients with Poststroke Fatigue: A Double-Blind, Randomized, Controlled Preliminary Study. Journal of Ethnopharmacology 2016, 194, 954–962. [Google Scholar] [CrossRef]
- Inglis, J.E.; Lin, P.-J.; Kerns, S.L.; Kleckner, I.R.; Kleckner, A.S.; Castillo, D.A.; Mustian, K.M.; Peppone, L.J. Nutritional Interventions for Treating Cancer-Related Fatigue: A Qualitative Review. Nutrition and Cancer 2019, 71, 21–40. [Google Scholar] [CrossRef]
- de Oliveira Campos, M.P.; Riechelmann, R.; Martins, L.C.; Hassan, B.J.; Casa, F.B.A.; Giglio, A.D. Guarana (Paullinia Cupana) Improves Fatigue in Breast Cancer Patients Undergoing Systemic Chemotherapy. The Journal of Alternative and Complementary Medicine 2011, 17, 505–512. [Google Scholar] [CrossRef]
- da Costa Miranda, V.; Trufelli, D.C.; Santos, J.; Campos, M.P.; Nobuo, M.; da Costa Miranda, M.; Schlinder, F.; Riechelmann, R.; del Giglio, A. Effectiveness of Guaraná (Paullinia Cupana) for Postradiation Fatigue and Depression: Results of a Pilot Double-Blind Randomized Study. The Journal of Alternative and Complementary Medicine 2009, 15, 431–433. [Google Scholar] [CrossRef]
- Sette, C.V. de M.; Ribas de Alcântara, B.B.; Schoueri, J.H.M.; Cruz, F.M.; Cubero, D. de I.G.; Pianowski, L.F.; Peppone, L.J.; Fonseca, F.; del Giglio, A. Purified Dry Paullinia Cupana (PC-18) Extract for Chemotherapy-Induced Fatigue: Results of Two Double-Blind Randomized Clinical Trials. Journal of Dietary Supplements 2018, 15, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Zinn, C.; Rowlands, D.S.; Naidoo, R.; Cronin, J. High-Protein, Low-Fat, Short-Term Diet Results in Less Stress and Fatigue Than Moderate-Protein, Moderate-Fat Diet During Weight Loss in Male Weightlifters: A Pilot Study. International Journal of Sport Nutrition and Exercise Metabolism 2015, 25, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Kaya Kaçar, H.; Avery, A.; Bennett, S.; McCullough, F. Dietary Patterns and Fatigue in Female Slimmers. Nutrition & Food Science 2020, 50, 1213–1227. [Google Scholar] [CrossRef]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig 2018, 15, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. Vagal Tone: A Physiologic Marker of Stress Vulnerability. Pediatrics 1992, 90, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Ye, S.; Huangfu, J.; Calimag, D.P. Music Therapy Is a Potential Intervention for Cognition of Alzheimer’s Disease: A Mini-Review. Transl Neurodegener 2017, 6, 2. [Google Scholar] [CrossRef]
- Matsumura, T.; Muraki, I.; Ikeda, A.; Yamagishi, K.; Shirai, K.; Yasuda, N.; Sawada, N.; Inoue, M.; Iso, H.; Brunner, E.J.; et al. Hobby Engagement and Risk of Disabling Dementia. J Epidemiol 2023, 33, 456–463. [Google Scholar] [CrossRef]
- Sommerlad, A.; Sabia, S.; Livingston, G.; Kivimäki, M.; Lewis, G.; Singh-Manoux, A. Leisure Activity Participation and Risk of Dementia. Neurology 2020, 95, e2803–e2815. [Google Scholar] [CrossRef]
- Kim, M.J.; Tsutsumimoto, K.; Doi, T.; Nakakubo, S.; Kurita, S.; Makizako, H.; Shimada, H. Relationships between Cognitive Leisure Activities and Cognitive Function in Older Adults with Depressive Symptoms: A Cross-Sectional Study. BMJ Open 2020, 10, e032679. [Google Scholar] [CrossRef]
- Muscari, A.; Giannoni, C.; Pierpaoli, L.; Berzigotti, A.; Maietta, P.; Foschi, E.; Ravaioli, C.; Poggiopollini, G.; Bianchi, G.; Magalotti, D.; et al. Chronic Endurance Exercise Training Prevents Aging-Related Cognitive Decline in Healthy Older Adults: A Randomized Controlled Trial. International Journal of Geriatric Psychiatry 2010, 25, 1055–1064. [Google Scholar] [CrossRef]
- Houghton, D.; Jones, T.W.; Cassidy, S.; Siervo, M.; MacGowan, G.A.; Trenell, M.I.; Jakovljevic, D.G. The Effect of Age on the Relationship between Cardiac and Vascular Function. Mech Ageing Dev 2016, 153, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-Predicted Maximal Heart Rate Revisited. J Am Coll Cardiol 2001, 37, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Goodwin, J. Effect of Aging on Respiratory System Physiology and Immunology. Clin Interv Aging 2006, 1, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Tolep, K.; Higgins, N.; Muza, S.; Criner, G.; Kelsen, S.G. Comparison of Diaphragm Strength between Healthy Adult Elderly and Young Men. Am J Respir Crit Care Med 1995, 152, 677–682. [Google Scholar] [CrossRef]
- Berry, R.B.; Pai, U.P.; Fairshter, R.D. Effect of Age on Changes in Flow Rates and Airway Conductance after a Deep Breath. Journal of Applied Physiology 1990, 68, 635–643. [Google Scholar] [CrossRef]
- Booth, F.W.; Ruegsegger, G.N.; Toedebusch, R.G.; Yan, Z. Chapter Six - Endurance Exercise and the Regulation of Skeletal Muscle Metabolism. In Progress in Molecular Biology and Translational Science; Bouchard, C., Ed.; Molecular and Cellular Regulation of Adaptation to Exercise; Academic Press, 2015; Vol. 135, pp. 129–151. [Google Scholar]
- Meinild Lundby, A.-K.; Jacobs, R.A.; Gehrig, S.; de Leur, J.; Hauser, M.; Bonne, T.C.; Flück, D.; Dandanell, S.; Kirk, N.; Kaech, A.; et al. Exercise Training Increases Skeletal Muscle Mitochondrial Volume Density by Enlargement of Existing Mitochondria and Not de Novo Biogenesis. Acta Physiologica 2018, 222, e12905. [Google Scholar] [CrossRef]
- Lundby, C.; Jacobs, R.A. Adaptations of Skeletal Muscle Mitochondria to Exercise Training. Experimental Physiology 2016, 101, 17–22. [Google Scholar] [CrossRef]
- Kasch, F.W.; Boyer, J.L.; Camp, S.V.; Nettl, F.; Verity, L.S.; Wallace, J.P. Cardiovascular Changes with Age and Exercise. Scandinavian Journal of Medicine & Science in Sports 1995, 5, 147–151. [Google Scholar] [CrossRef]
- Skinner, J.S.; Gaskill, S.E.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Wilmore, J.H.; Bouchard, C. Heart Rate versus %VO2max: Age, Sex, Race, Initial Fitness, and Training Response--HERITAGE. Med Sci Sports Exerc 2003, 35, 1908–1913. [Google Scholar] [CrossRef]
- Buist, A.S.; McBurnie, M.A.; Vollmer, W.M.; Gillespie, S.; Burney, P.; Mannino, D.M.; Menezes, A.M.; Sullivan, S.D.; Lee, T.A.; Weiss, K.B.; et al. International Variation in the Prevalence of COPD (The BOLD Study): A Population-Based Prevalence Study. The Lancet 2007, 370, 741–750. [Google Scholar] [CrossRef]
- Izuhara, Y.; Matsumoto, H.; Nagasaki, T.; Kanemitsu, Y.; Murase, K.; Ito, I.; Oguma, T.; Muro, S.; Asai, K.; Tabara, Y.; et al. Mouth Breathing, Another Risk Factor for Asthma: The Nagahama Study. Allergy 2016, 71, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Triana, B.E.G.; Ali, A.H.; León, I.B.G. Mouth Breathing and Its Relationship to Some Oral and Medical Conditions: Physiopathological Mechanisms Involved. Revista Habanera de Ciencias Médicas 2016, 15, 200–212. [Google Scholar]
- Lee, Y.-C.; Lu, C.-T.; Cheng, W.-N.; Li, H.-Y. The Impact of Mouth-Taping in Mouth-Breathers with Mild Obstructive Sleep Apnea: A Preliminary Study. Healthcare 2022, 10, 1755. [Google Scholar] [CrossRef] [PubMed]
- Home Oxygen Therapy Available online:. Available online: https://www.nhs.uk/conditions/home-oxygen-treatment/ (accessed on 27 October 2023).
- Pioli, G.; Barone, A.; Giusti, A.; Oliveri, M.; Pizzonia, M.; Razzano, M.; Palummeri, E. Predictors of Mortality after Hip Fracture: Results from 1-Year Follow-Up. Aging Clin Exp Res 2006, 18, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.A.; Evans, W.J. Changes in Skeletal Muscle with Aging: Effects of Exercise Training. Exerc Sport Sci Rev 1993, 21, 65–102. [Google Scholar] [CrossRef]
- Keller, K.; Engelhardt, M. Strength and Muscle Mass Loss with Aging Process. Age and Strength Loss. Muscles Ligaments Tendons J 2014, 3, 346–350. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Duque, G. Vitamin D in the Aging Musculoskeletal System: An Authentic Strength Preserving Hormone. Molecular Aspects of Medicine 2005, 26, 203–219. [Google Scholar] [CrossRef]
- Aschbacher, K.; Epel, E.; Wolkowitz, O.M.; Prather, A.A.; Puterman, E.; Dhabhar, F.S. Maintenance of a Positive Outlook during Acute Stress Protects against Pro-Inflammatory Reactivity and Future Depressive Symptoms. Brain, Behavior, and Immunity 2012, 26, 346–352. [Google Scholar] [CrossRef]
- Lipowski, M. Level of Optimism and Health Behavior in Athletes. Med Sci Monit 2012, 18, CR39–CR43. [Google Scholar] [CrossRef]
- Ingledew, D.K.; Brunning, S. Personality, Preventive Health Behaviour and Comparative Optimism about Health Problems. J Health Psychol 1999, 4, 193–208. [Google Scholar] [CrossRef]
- Mulkana, S.S.; Hailey, B.J. The Role of Optimism in Health-Enhancing Behavior. American Journal of Health Behavior 2001, 25, 388–395. [Google Scholar] [CrossRef]
- Rasmussen, H.N.; Scheier, M.F.; Greenhouse, J.B. Optimism and Physical Health: A Meta-Analytic Review. Annals of Behavioral Medicine 2009, 37, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Mannix, M.M.; Feldman, J.M.; Moody, K. Optimism and Health-Related Quality of Life in Adolescents with Cancer. Child: Care, Health and Development 2009, 35, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Chopik, W.J.; Smith, J. Are People Healthier If Their Partners Are More Optimistic? The Dyadic Effect of Optimism on Health among Older Adults. Journal of Psychosomatic Research 2014, 76, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, C. An Examination of Regret as Expressed in the Life Reflections of Older Adults : Predictors of Regret Intensity and Frequency, and Association with Well-Being. phd, Concordia University, 2007. [Google Scholar]
- Jokisaari, M. Regrets and Subjective Well-Being: A Life Course Approach. Journal of Adult Development 2004, 11, 281–288. [Google Scholar] [CrossRef]
- Brassen, S.; Gamer, M.; Peters, J.; Gluth, S.; Büchel, C. Don’t Look Back in Anger! Responsiveness to Missed Chances in Successful and Nonsuccessful Aging. Science 2012, 336, 612–614. [Google Scholar] [CrossRef]
- Bono, G.; McCullough, M.E.; Root, L.M. Forgiveness, Feeling Connected to Others, and Well-Being: Two Longitudinal Studies. Pers Soc Psychol Bull 2008, 34, 182–195. [Google Scholar] [CrossRef]
- Allemand, M.; Hill, P.L.; Ghaemmaghami, P.; Martin, M. Forgivingness and Subjective Well-Being in Adulthood: The Moderating Role of Future Time Perspective. Journal of Research in Personality 2012, 46, 32–39. [Google Scholar] [CrossRef]
- Macaskill, A. Differentiating Dispositional Self-Forgiveness from Other-Forgiveness: Associations with Mental Health and Life Satisfaction. Journal of Social and Clinical Psychology 2012, 31, 28–50. [Google Scholar] [CrossRef]
- Robustelli, B.L.; Whisman, M.A. Gratitude and Life Satisfaction in the United States and Japan. J Happiness Stud 2018, 19, 41–55. [Google Scholar] [CrossRef]
- Kong, F.; Ding, K.; Zhao, J. The Relationships Among Gratitude, Self-Esteem, Social Support and Life Satisfaction Among Undergraduate Students. J Happiness Stud 2015, 16, 477–489. [Google Scholar] [CrossRef]
- Unanue, W.; Gomez Mella, M.E.; Cortez, D.A.; Bravo, D.; Araya-Véliz, C.; Unanue, J.; Van Den Broeck, A. The Reciprocal Relationship Between Gratitude and Life Satisfaction: Evidence From Two Longitudinal Field Studies. Frontiers in Psychology 2019, 10. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, S.; Liu, Y.; Gang, X.; Wang, G. Grip Strength and the Risk of Cognitive Decline and Dementia: A Systematic Review and Meta-Analysis of Longitudinal Cohort Studies. Frontiers in Aging Neuroscience 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jazwinski, S.M. Quantitative Measures of Healthy Aging and Biological Age. Healthy Aging Res 2015, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Hirase, T.; Okubo, Y.; Delbaere, K.; Menant, J.C.; Lord, S.R.; Sturnieks, D.L. Risk Factors for Falls and Fall-Related Fractures in Community-Living Older People with Pain: A Prospective Cohort Study. International Journal of Environmental Research and Public Health 2023, 20, 6040. [Google Scholar] [CrossRef] [PubMed]
- Runge, M.; Hunter, G. Determinants of Musculoskeletal Frailty and the Risk of Falls in Old Age. J Musculoskelet Neuronal Interact 2006, 6, 167–173. [Google Scholar] [PubMed]
- Zech, A.; Hübscher, M.; Vogt, L.; Banzer, W.; Hänsel, F.; Pfeifer, K. Balance Training for Neuromuscular Control and Performance Enhancement: A Systematic Review. Journal of Athletic Training 2010, 45, 392–403. [Google Scholar] [CrossRef]
- Stathokostas, L.; McDonald, M.W.; Little, R.M.D.; Paterson, D.H. Flexibility of Older Adults Aged 55–86 Years and the Influence of Physical Activity. Journal of Aging Research 2013, 2013, e743843. [Google Scholar] [CrossRef]
- Araújo, C.G.S. de Flexibility Assessment: Normative Values for Flexitest from 5 to 91 Years of Age. Arq. Bras. Cardiol. 2008, 90, 280–287. [Google Scholar] [CrossRef]
- Wolters, S.; Schumacher, B. Genome Maintenance and Transcription Integrity in Aging and Disease. Frontiers in Genetics 2013, 4. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H.J. DNA Damage, Aging, and Cancer. New England Journal of Medicine 2009, 361, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.L.; Newman, A.B. Telomere Length in Epidemiology: A Biomarker of Aging, Age-Related Disease, Both, or Neither? Epidemiologic Reviews 2013, 35, 112–131. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Raj, K. DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nat Rev Genet 2018, 19, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Brandhorst, S.; Longo, V.D. Fasting and Caloric Restriction in Cancer Prevention and Treatment. In Metabolism in Cancer; Cramer, T., A. Schmitt, C., Eds.; Recent Results in Cancer Research; Springer International Publishing: Cham, 2016; ISBN 978-3-319-42118-6. [Google Scholar]
- Chow, M.T.; Möller, A.; Smyth, M.J. Inflammation and Immune Surveillance in Cancer. Seminars in Cancer Biology 2012, 22, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Riddle, D.R. Brain Aging: Models, Methods, and Mechanisms; CRC Press, 2007; ISBN 978-1-00-061155-7. [Google Scholar]
- Wild, K.; Howieson, D.; Webbe, F.; Seelye, A.; Kaye, J. Status of Computerized Cognitive Testing in Aging: A Systematic Review. Alzheimer’s & Dementia 2008, 4, 428–437. [Google Scholar] [CrossRef]
- Proust-Lima, C.; Amieva, H.; Dartigues, J.-F.; Jacqmin-Gadda, H. Sensitivity of Four Psychometric Tests to Measure Cognitive Changes in Brain Aging-Population–Based Studies. American Journal of Epidemiology 2007, 165, 344–350. [Google Scholar] [CrossRef]
- Belleville, S.; Fouquet, C.; Hudon, C.; Zomahoun, H.T.V.; Croteau, J. Consortium for the Early Identification of Alzheimer’s disease-Quebec Neuropsychological Measures That Predict Progression from Mild Cognitive Impairment to Alzheimer’s Type Dementia in Older Adults: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2017, 27, 328–353. [Google Scholar] [CrossRef]
- Butler, M.; McCreedy, E.; Nelson, V.A.; Desai, P.; Ratner, E.; Fink, H.A.; Hemmy, L.S.; McCarten, J.R.; Barclay, T.R.; Brasure, M.; et al. Does Cognitive Training Prevent Cognitive Decline? Ann Intern Med 2018, 168, 63–68. [Google Scholar] [CrossRef]
- Kouzuki, M.; Kato, T.; Wada-Isoe, K.; Takeda, S.; Tamura, A.; Takanashi, Y.; Azumi, S.; Kojima, Y.; Maruyama, C.; Hayashi, M.; et al. A Program of Exercise, Brain Training, and Lecture to Prevent Cognitive Decline. Annals of Clinical and Translational Neurology 2020, 7, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-H.; Wu, I.-C.; Hsiung, C.A. Reading Activity Prevents Long-Term Decline in Cognitive Function in Older People: Evidence from a 14-Year Longitudinal Study. International Psychogeriatrics 2021, 33, 63–74. [Google Scholar] [CrossRef]
- Fallahpour, M.; Borell, L.; Luborsky, M.; Nygård, L. Leisure-Activity Participation to Prevent Later-Life Cognitive Decline: A Systematic Review. Scandinavian Journal of Occupational Therapy 2016, 23, 162–197. [Google Scholar] [CrossRef] [PubMed]
- Van den Noort, M.; Vermeire, K.; Bosch, P.; Staudte, H.; Krajenbrink, T.; Jaswetz, L.; Struys, E.; Yeo, S.; Barisch, P.; Perriard, B.; et al. A Systematic Review on the Possible Relationship Between Bilingualism, Cognitive Decline, and the Onset of Dementia. Behavioral Sciences 2019, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Muiños, M.; Ballesteros, S. Does Dance Counteract Age-Related Cognitive and Brain Declines in Middle-Aged and Older Adults? A Systematic Review. Neuroscience & Biobehavioral Reviews 2021, 121, 259–276. [Google Scholar] [CrossRef]
- Marioni, R.E.; Proust-Lima, C.; Amieva, H.; Brayne, C.; Matthews, F.E.; Dartigues, J.-F.; Jacqmin-Gadda, H. Social Activity, Cognitive Decline and Dementia Risk: A 20-Year Prospective Cohort Study. BMC Public Health 2015, 15, 1089. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.; Hutt, R.; Yi Tsui, C.K.; Zorokong, K.; Marfeo, E. Meditation-Based Interventions for Adults With Dementia: A Scoping Review. The American Journal of Occupational Therapy 2020, 74, 7403205010p1–7403205010p14. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, L.; Zhu, L.; Chen, D.; Cai, K.; Liu, Z.; Chen, A. Moderate Exercise Combined with Enriched Environment Enhances Learning and Memory through BDNF/TrkB Signaling Pathway in Rats. International Journal of Environmental Research and Public Health 2021, 18, 8283. [Google Scholar] [CrossRef]
- Preventing Functional Decline with Age: Biomarkers and Best Practices - [V1].
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
