Submitted:
07 November 2024
Posted:
08 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Site and Experimental Design
2.2. Agricultural Practices
2.2.1. Barluenga Site
2.2.2. Torremira Site
2.3. Sampling and Analytical Procedures
2.3.1. Soil Sampling
2.3.2. Nitrate Concentrations of Soil Solution
2.3.3. Crop Sampling
2.4. Data and Statistical Analysis
3. Results
3.1. Yield and N Absorption
3.2. Soil Mineral N
3.3. Soil Solution Nitrate Concentration
4. Discussion
4.1. Crop Yield and Nitrogen Use Efficiency
4.2. Risk for Nitrate Leaching
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-Aguirre, M.T.; Isidoro, D. Hydrosaline balance in and nitrogen loads from an irrigation district before and after modernization. Agric. Water Manage. 2018, 208, 163–175. [Google Scholar] [CrossRef]
- Trindade, H.; Coutinho, J.; Jarvis, S.; Moreira, N. Effects of different rates and timing of application of nitrogen as slurry and mineral fertilizer on yield of herbage and nitrate-leaching potential of a maize/Italian ryegrass cropping system in north-west Portugal. Grass and Forage Sci. 2009, 64, 2–11. [Google Scholar] [CrossRef]
- Salmerón, M.; Cavero, J.; Quílez, D.; Isla, R. Winter cover crops affect monoculture maize yield and N leaching under irrigated Mediterranean conditions. Agron. J. 2010, 102, 1700–1709. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Muñoz-Carpena, R.; Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ 2012, 155, 50–61. [Google Scholar] [CrossRef]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Change Biol. 2022, 28, 4489–4749. [Google Scholar] [CrossRef] [PubMed]
- Maresma, A.; Martínez-Casasnovas, J.A.; Santiveri, F.; Lloveras, J. Nitrogen management in double-annual cropping system (barley-maize) under irrigated Mediterranean environments. Eur. J. Agron. 2019, 103, 98–107. [Google Scholar] [CrossRef]
- Vogeler, I.; Jensen, J.L.; Thomsen, I.K.; Labouriau, R.; Hansen, E.M. Fertiliser N rates interact with sowing time and catch crops in cereals and affect yield and nitrate leaching. Eur. J Agron. 2021, 124, 126244. [Google Scholar] [CrossRef]
- Boardman, J.; Poesen, J. Soil erosion in Europe; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Eurostat. Data Browser. Number of pigs. Available on line: https://doi.org/10.2908/TAG00018 (accessed on 3 May 2024). [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Encuestas Ganaderas, análisis del número de animales por tipos. Resultados de Ganaderia Año 2024. Available on line: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/ganaderia/encuestas-ganaderas/default.aspx (accessed on 3 May 2024).
- Amon, B.V.; Kryvoruchko, T.; Amon, S.; Zechmeister-Boltenstern, S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry. Agric. Ecosyst. Environ. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Bosch-Serra, A.D.; Yagüe, M.R.; Teira-Esmatges, M.R. Ammonia emissions from different fertilizing strategies in Mediterranean rainfed winter cereals. Atmos. Environ. 2014, 84, 204–212. [Google Scholar] [CrossRef]
- Oenema, O.; Brentrup, F.; Lammel, J.; Bascou, P.; Billen, G.; Dobermann, A.; Erisman, J.W.; Garnett, T.; Hammel, M.; Haniotis, T.; Hillier, J.; Hoxha, A.; Jensen, L.S.; Oleszek, W.; Pallière, C.; Powlson, D.; Quemada, M.; Schulman, M.; Sutton, M.A.; Van Grinsven, H.J.M.; Winiwarter, W. Nitrogen Use Efficiency (NUE) - an indicator for the utilization of nitrogen in agriculture and food systems; Wageningen University: Alterra, Wageningen, NL, 2015. [Google Scholar]
- Ovejero, J.; Maresma, A.; Marks, E.A.N.; Ortiz, C.; Boixadera, J.; Serra, X.; Ponsá, S.; Lloveras, J.; Casas, C. Nitrogen fertilization with pig slurry in a barley-sorghum double-annual forage cropping system. Nutr. Cycl. Agroecosyst. 2022, 124, 373–388. [Google Scholar] [CrossRef]
- Fernández-Ortega, J.; Álvaro-Fuentes, J.; Talukder, R.; Lampurlanés, J.; Cantero-Martínez, C. The use of double-cropping in combination with no-tillage and optimized nitrogen fertilization improve crop yield and water use efficiency under irrigated conditions. Field Crops Res. 2023, 301, 109017. [Google Scholar] [CrossRef]
- Perego, A.; Giussani, A.; Fumagalli, M.; Sanna, M.; Chiodini, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. Crop rotation, fertilizer types and application timing affecting nitrogen leaching in nitrate vulnerable zones in Po Valley. Ital. J. Agrometeorol. 2013, 18, 39–50. [Google Scholar]
- European Commission. Council Directive 91/676/EEC, of 12 December 1991, concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal of the European Community 31/12/1991 L375, 1–8. https://eur-lex.europa.eu/eli/dir/1991/676/oj.
- Schröder, J. Revisiting the agronomic benefits of manure: a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour. Technol. 2005, 96, 253–261. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr. Cycl. Agroecosyst. 2002, 46, 237–256. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Quílez, D. Response of maize yield, nitrate leaching and soil nitrogen to pig slurry combined with mineral nitrogen. J. Environ. Qual. 2010, 39, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Yagüe, M.R.; Iguácel, F.; Orús, F. Fertilización con purín: resultados agronómicos en doble cultivo anual de cebada-maíz y efecto residual en cebada (2006–2012). Informaciones técnicas Gobierno de Aragón 2013, 244, 1–16. https://digital.csic.es/bitstream/10261/86478/1/Yag%c3%bceMR_InfTec_2013.pdf.
- Perramon, B.; Bosch-Serra, A.D.; Domingo, F.; Boixadera, J. Organic and mineral fertilization management improvements to a double-annual cropping system under humid Mediterranean conditions. Eur. J. Agron. 2016, 76, 28–40. [Google Scholar] [CrossRef]
- Perramon, B.; Bosch-Serra, A.D.; Domingo, F.; Boixadera, J. The efficiency of nitrogen in cattle manure applied to a double-annual forage cropping system. Grass Forage Sci. 2016, 72, 676–690. [Google Scholar] [CrossRef]
- Demurtas, C.E.; Seddaiu, G.; Ledda, L.; Cappai, C.; Doro, L.; Carletti, A.; Roggero, P.P. Replacing organic with mineral N fertilization does not reduce nitrate leaching in double crop forage systems under Mediterranean conditions. Agric. Ecosyst. Environ. 2016, 219, 83–92. [Google Scholar] [CrossRef]
- Du, H.; Gao, W.; Li, J.; Shen, S.; Wang, F.; Fu, L.; Zhang, K. Effects of digested biogas slurry application mixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain. Agric. Water Manage. 2019, 213, 882–893. [Google Scholar] [CrossRef]
- Hina, N.S. Global meta-analysis of nitrate leaching vulnerability in synthetic and organic fertilizers over the past four decades. Water 2024, 16, 457. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Iguacel, F.; Yagüe, M.R.; Orús, F.; Quílez, D. Fertilización con purín en doble cultivo anual, en mínimo laboreo, y riego por aspersión. Informaciones Técnicas Gobierno de Aragón 2010, 223, 1–12. https://digital.csic.es/bitstream/10261/31120/1/YagueRM_InfTecn_2010b.pdf (accessed on 3 May 2024).
- Yagüe, M.R.; Bosch-Serra, A.D.; Boixadera, J. Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and constraints. Biosyst. Eng. 2012, 111, 206–216. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Quílez, D. On-farm Measurement of Electrical Conductivity for the Estimation of Ammonium Nitrogen Concentration in Pig Slurry. J. Environ. Qual. 2012, 41, 893–900. [Google Scholar] [CrossRef]
- Addiscott, T.M. Measuring and modelling nitrogen leaching: parallel problems. Plant Soil 1996, 181, 1–6. [Google Scholar] [CrossRef]
- Parkin, T.B.; Meisinger, J.J.; Chester, S.T.; Starr, J.L.; Robinson, J.A. Evaluation of statistical estimation methods for lognormally distributed variables. Soil Sci. Soc. Am. J. 1988, 52, 323–329. [Google Scholar] [CrossRef]
- Daudén, A.; Quílez, D. Pig Slurry versus mineral fertilization on corn yield and nitrate leaching in a Mediterranean irrigated environment. Eur. J. Agron. 2004, 21, 7–20. [Google Scholar] [CrossRef]
- Mateo-Marín, N.; Isla, R.; Guillen, M.; Quílez, D. Agronomic and Environmental Implications of Substituting Pig Slurry for Synthetic Nitrogen in Mediterranean Wheat Systems. Agronomy 2020, 10, 1498. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación Encuesta sobre Superficies y Rendimientos Cultivos (ESYRCE). https://www.mapa.gob.es/es/estadistica/temas/estadistica-digital/powerbi-esyrce.aspx (accessed on 22 February 2024).
- Mateo-Marín, N.; Quílez, D.; Guillén, M.; Isla, R. Utility of stabilized nitrogen fertilizers to reduce nitrate leaching under optimal management practices. J. Plant Nutr. Soil Sci. 2020, 183, 567–578. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayananad, G.K.; Vadivel, R.; Das, T.K.; Raj, R.; Pooniya, V.; Babu, S.; Rathore, S.S.; Muralikroshnan, L.; Tiwari, G. Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef] [PubMed]
- Vogeler, I.; Nielsen, S.; Labouriau, R.; Cichota, R.; Olesen, J.E.; Thomsen, I.K. Nitrate leaching from suction cup data: Influence of method of drainage calculation and concentration interpolation. J. Environ. Qual. 2020, 49, 440–449. [Google Scholar] [CrossRef]
- Ramos, C.; Küecke, M. A review of methods for nitrate leaching measurement. Acta Hortic. 2001, 563, 259–266. [Google Scholar] [CrossRef]
- Wey, H.; Hunkeler, D.; Bischoff, W.A.; Bünemannet, E.K. Field-scale monitoring of nitrate leaching in agriculture: assessment of three methods. Environ. Monit. Assess. 2022, 194, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cameron, K.; Buchan, G.; Zhao, L.; Zhang, E.H.; Smith, N.; Carrick, S. Comparison of lysimeters and porous ceramic cups for measuring nitrate leaching in different soil types. New Zeal. J. Agr. Res. 2012, 55, 333–345. [Google Scholar] [CrossRef]
- Alberts, A.E.; Burwell, R.E.; Schuman, G.E. Soil nitrate-nitrogen determined by coring and solution extracting techniques. Soil Sci. Soc. Am. J. 1977. 41, 90–92. [CrossRef]
- Jabro, J.; Stevens, W.; Iversen, W.; Allen, B.; Sainju, U. Suction cup samplers for estimating nitrate-nitrogen in soil water in irrigated sugar beet production. J. Environ. Prot. 2016, 7, 1342–1354. [Google Scholar] [CrossRef]
- Weihermüller, L.; Siemens, J.; Deurer, M.; Knoblauch, S.; Rupp, H.; Göttlein, A.; Pütz, T. In situ soil water extraction: A review. J. Environ. Qual. 2007, 36, 1735–1748. [Google Scholar] [CrossRef]
- Wolf, K.A.; Pullens, J.W.M.; Børgesen, C.D. Optimized number of suction cups required to predict annual nitrate leaching under varying conditions in Denmark. J. Environ. Manage. 2023, 328, 116964. [Google Scholar] [CrossRef]
- Trindade, H.; Coutinho, J.; Van Beusichem, M.L.; Scholefield, D.; Moreira, N. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements. Plant Soil 1997, 195, 247–256. [Google Scholar] [CrossRef]
- Kühling, I.; Beiküfner, M.; Vergara, M.; Trautz, D. Effects of Adapted N-Fertilisation Strategies on Nitrate Leaching and Yield Performance of Arable Crops in North-Western Germany. Agronomy 2021, 11, 64. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to soil physics. Academic press Inc: Orlando FL USA, 1982; pp. 107–132. [Google Scholar]
- Ren, F.; Sun, N.; Misselbrook, T.; Wu, L.; Xu, M.; Zhang, F.; Xu, W. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops: A meta-analysis. Sc. Total Environ. 2022, 850, 158064. [Google Scholar] [CrossRef] [PubMed]
- Knox, E.; Moody, D.W. Influence of Hydrology, Soil Properties, and Agricultural Land Use on Nitrogen in Groundwater. In Managing nitrogen for groundwater quality and farm profitability; Follett, R.F., Keeney, D.R., Cruse, R.M., Eds.; SSSA: Madison, WI, USA, 1991; pp. 19–57. [Google Scholar]
- Daudén, A.; Quilez, D.; Vera, M.V. Pig slurry application and irrigation effects on nitrate leaching in Mediterranean soil lysimeters. J. Environ. Qual. 2004, 33, 2290–2295. [Google Scholar] [CrossRef] [PubMed]
- Perego, A.; Basile, A.; Bonfante, A.; De Mascellis, R.; Terribile, F.; Brenna, S.; Acutis, M. Nitrate leaching under maize cropping systems in Po Valley (Italy). Agric. Ecosyst. Environ. 2012, 147, 57–65. [Google Scholar] [CrossRef]
- Salmerón, M.; Cavero, J.; Delgado, I.; Isla, R. Yield and environmental effects of summer pig slurry applications to irrigated alfalfa under Mediterranean conditions. Agron. J. 2010, 102, 559–567. [Google Scholar] [CrossRef]
- Herrero, E.; Quílez, D.; Daudén, A.; Salvador, R.; Guillen, M.; Avió, D.; Crespo, A.; Gea, R. Fertigation with pig slurry in demonstration fields in Aragon (Spain). In Ammonia emission reduction in mediterranean agriculture with innovative slurry fertigation techniques; Quílez, D., Herrero, E., Provolo, G., Eds.; Centro de Investigación y Tecnología Agroalimentaria de Aragón: Zaragoza, SP, 2022; pp. 59–74. https://www.lifearimeda.eu/wp-content/uploads/2022/05/ARIMEDA_PF_EN.pdf (accessed on 3 May 2024).

| Site and Soil Characteristics | Barluenga | Torremira | ||||
|---|---|---|---|---|---|---|
| Depth (cm) | 0-0.3 | 0.3-0.6 | 0.6-0.9 | 0.9-1.2 | 0-0.3 | 0.3-0.5 |
| EC1:5 (dS m-1) | 0.21 | 0.30 | 0.53 | 0.311 | 0.17 | 0.18 |
| OM (mg kg-1) | 24.2 | 17.2 | 13.2 | 11.2 | 22.7 | 17.5 |
| P Olsen (mg kg-1) | 16.3 | 7.4 | 7.9 | 10.3 | 18.4 | 7 |
| K (mg kg-1) | 651.9 | 444.1 | 634.2 | 613.7 | 418.1 | 173.7 |
| Sand (mg kg-1) | 175 | 175 | 140 | 163 | 537 | 623 |
| Silt (mg kg-1) | 200 | 204 | 221 | 220 | 76 | 173 |
| Clay (mg kg-1) | 625 | 621 | 639 | 617 | 386 | 204 |
| Ston. (mg kg-1) | 5.1 | 8.2 | 4 | 0.6 | 54.8 | 57.6 |
| Nmin (kg ha-1) | 61.2 | 63.2 | 28.7 | 14.4 | 38 | 18.3 |
| Before sowing | Top-dress 1 | Top-dress 2 | Total | ||||
|---|---|---|---|---|---|---|---|
| Year-Treatmet-Crop | N rate Kg N/ha |
Date | N rate Kg N/ha |
Date | N rate Kg N/ha |
Date | N rate Kg N/ha |
| Barluenga | |||||||
| 2017-P-Wheat | 36 | 16/11/16 | 96 (PS) | 02/03/17 | 30 | 11/04/17 | 162 |
| 2017-M-Wheat | 36 | 16/11/16 | 120 | 08/03/17 | 30 | 11/04/17 | 186 |
| 2017-P-Maize | 245 (PS) | 16/06/17 | 120 | 30/06/17 | - | 365 | |
| 2017-M-Maize | - | - | 270 | 30/06/17 | - | 270 | |
| 2018-P-Wheat | - | - | 139 (PS) | 03/02/18 | 30 | 17/03/18 | 169 |
| 2018-M-Wheat | - | - | 120 | 03/02/18 | 30 | 17/03/18 | 150 |
| 2018-P-Maize | 165 (PS) | 03/07/18 | 120 | 22/07/18 | - | 285 | |
| 2018-M-Maize | - | - | 270 | 22/07/18 | - | 270 | |
| 2019-P-Wheat | - | - | 231 (PS) | 01/03/19 | 30 | 06/04/19 | 261 |
| 2019-M-Wheat | - | - | 120 | 01/03/19 | 30 | 06/04/19 | 150 |
| Torremira | |||||||
| 2017-P-Pea | 261 (PS) | 26/01/17 | 261 | ||||
| 2017-M-Pea | 36 | 26/01/17 | 36 | ||||
| 2017-P-Maize | 191 (PS) | 02/06/17 | 120 | 30/06/17 | 60 | 14/07/17 | 371 |
| 2017-M-Maize | 48 | 18/06/17 | 240 | 30/06/17 | 60 | 14/07/17 | 348 |
| 2018-P-Pea | 20/12/17 | 108 (PS) | 02/02/18 | 108 | |||
| 2018-M-Pea | 20/12/17 | 0 | |||||
| 2018-P-Maize | 262 (PS) | 28/06/18 | 100 | 18/07/18 | 60 | 05/08/18 | 422 |
| 2018-M-Maize | 18/06/17 | 240 | 18/07/18 | 60 | 05/08/18 | 300 | |
| 2019-P-Barley | 205 (PS) | 06/03/19 | 205 | ||||
| 2019-M-Barley | 150 | 06/03/19 | 150 | ||||
| 2019-P-Maize | 179 (PS) | 24/06/19 | 150 | 15/07/19 | 60 | 06/08/19 | 389 |
| 2019-M-Maize | 24/06/19 | 270 | 15/07/19 | 60 | 06/08/19 | 330 | |
| Wheat | Maize | ||||
|---|---|---|---|---|---|
| Treatment | Year | Grain Yield Kg/ha, 12% |
N uptake Kg N/ha |
Grain Yield Kg/ha, 14% |
N uptake Kg N/ha |
| P | 2017 | 5078 | 195 | 9739 | 219 |
| M | 2017 | 4771 | 195 | 9652 | 217 |
| p1 | ns | ns | ns | ns | |
| P | 2018 | 6051 | 172 | 8364 | 148 |
| M | 2018 | 5373 | 148 | 8781 | 156 |
| p1 | ns | ns | ns | ns | |
| P | 2019 | 7210 | 188 | - | - |
| M | 2019 | 7275 | 192 | - | - |
| p1 | ns | ns | |||
| Green pea (barley in 2019) | Maize | ||||
|---|---|---|---|---|---|
| Treatment | Year | Grain Yield Kg/ha, 12% |
N uptake Kg N/ha |
Grain Yield Kg/ha, 14% |
N uptake Kg N/ha |
| P | 2017 | 6434 | - | 17663 | 245 |
| M | 2017 | 6621 | - | 18033 | 245 |
| p1 | ns | ns | ns | ||
| P | 2018 | 5535 | 271 | 12059 | 209 |
| M | 2018 | 6329 | 275 | 12292 | 173 |
| p1 | ns | ns | ns | ns | |
| P | 2019 | 8718 | 187 | 13337 | 207 |
| M | 2019 | 8402 | 153 | 12230 | 176 |
| p1 | ns | ns | ns | ns | |
| Site | Treatment | 01/2017 | 12/2017 | 12/2018 | 07/2019 | 12/2019 |
|---|---|---|---|---|---|---|
| Barluenga | P | 150.1 | 71.5 | 111.9 | 64.9 | - |
| M | 150.1 | 74.7 | 133.6 | 58.0 | - | |
| p1 | - | ns | ns | ns | ||
| Torremira | P | 62.6 | 65.6 | 51.9 | - | 35.0 |
| M | 62.6 | 68.2 | 41.6 | - | 22.6 | |
| p1 | - | ns | ns | ns |
| Site | Treatment | 2017 | 2018 | 2019 | Total Period | |||
|---|---|---|---|---|---|---|---|---|
| Barluenga | Crop: | Wheat | Maize | Wheat | Maize | Wheat | ||
| P | 14.3 | 5.1 | 3.3 | 1.3 | 24.3 | - | 10.4 | |
| M | 31.7 | 19.6 | 1.6 | 5.0 | 7.6 | - | 10.7 | |
| N (dates) | 2 | 7 | 4 | 8 | 10 | - | 31 | |
| p1 | ns | ns | ns | ns | ns | ns | ||
| Torremira | Crop: | Green pea | Maize | Green pea | Maize | Barley | Maize | |
| P | 353.3 | 432.8 | 164.6 | 437.1 | 105.6 | 170.8 | 274.8 | |
| M | 566.3 | 858.3 | 71.9 | 207.0 | 60.4 | 113.0 | 295.8 | |
| N (dates) | 2 | 10 | 6 | 9 | 7 | 13 | 47 | |
| p1 | ns | ns | ns | ns | ns | ns | ns | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
