Submitted:
14 November 2024
Posted:
15 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Carotenoid Biosynthesis in Plants
3. Carotenoid content and composition in potato tubers
3. Genetic Analysis of Carotenoid Accumulation in Tubers
3.1. Carotenoid Biosynthesis
3.1.1. Psy
3.1.2. Chy2
3.1.3. Zep
3.1.4. Lcye
3.2. Carotenoid. Degradation
3.2.1. Ccd4a
3.2.2. Lox
3.3. Carotenoid. Storage
3.4. Additional Transgenic Strategies to Increase Tuber Carotenoid Content
3.4.1.“. Golden” Potato
3.4.2. Dxs
3.4.3. Astaxanthin
4. Genome Editing
5. Regulation of Carotenoid Metabolism
5.1. Transcriptional Regulation
5.2. Post-Transcriptional Regulation
6. Conclusions
Funding
Conflicts of Interest
References
- Available online: http://www.fao.org/faostat/en/#data (accessed on 22 June 2024).
- Spooner, D.M., Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes. Bot. Rev. 2014, 80, 283–383. doi: 10.1007/s12229-014-9146-y.
- Machida-Hirano, R. Diversity of potato genetic resources. Breed. Sci. 2015, 65(1), 26–40. doi: 10.1270/jsbbs.65.26.
- Brown C.R. Breeding for Phytonutrient Enhancement of Potato. Am. J. Pot. Res. 2008, 85, 298–307. [CrossRef]
- Andre, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; Herrera Mdel, R.; Hoffmann, L.; Hausman, J.F.; Larondelle, Y.; Evers, D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 2007, 55(2), 366-378. [CrossRef]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49(10), 823-840. [CrossRef]
- Singh, B.; Goutam, U.; Kukreja, S.; Sharma, J.; Sood, S.; Bhardwaj, V. Potato biofortification: an effective way to fight global hidden hunger. Physiol. Mol. Biol. Plants. 2021, 27(10), 2297-2313. [CrossRef]
- Zhu, C.; Bai, C., Sanahuja, G.; Yuan, D.; Farré, G.; Naqvi, S.; Shi, L.; Capell, T.; Christou, P. The regulation of carotenoid pigmentation in flowers. Arch. Biochem. Biophys. 2010, 504(1), 132-141. [CrossRef]
- Domonkos, I.; Kis, M.; Gombos, Z.; Ughy, B. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res. 2013, 52(4), 539-561. [CrossRef]
- Ahrazem, O.; Gómez-Gómez, L.; Rodrigo, M.J.; Avalos, J.; Limón, M.C. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int. J. Mol. Sci. 2016, 17(11), 1781. [CrossRef]
- Pogson, B.J.; Niyogi, K.K.; Björkman, O.; DellaPenna, D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Natl. Acad. Sci. U.S.A. 1998, 95(22), 13324-13329. [CrossRef]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2, 15036. [CrossRef]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55(3), 207-216. [CrossRef]
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients. 2021, 13(5), 1703. [CrossRef]
- Mares, J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu. Rev. Nutr. 2016, 36, 571-602. [CrossRef]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: biochemistry, pharmacology and treatment. Br. J. Pharmacol. 2017,174(11), 1290-1324. [CrossRef]
- Polidori, M.C.; Stahl, W.; Griffiths, H.R. Nutritional cognitive neuroscience of aging: Focus on carotenoids and cognitive frailty. Redox Biol. 2021, 44, 101996. [CrossRef]
- Cobbs, C.; Heath, J.; Stireman, J.O. 3rd; Abbot, P. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals. Mol. Phylogenet. Evol. 2013, 68(2), 221-228. [CrossRef]
- Barreiro, C.; Barredo, J.L. Carotenoids Production: A Healthy and Profitable Industry. Methods Mol. Biol. 2018,1852, 45-55. [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; Ribot, J.; Rodrigo, M.J.; Zacarias, L.; Zhu, C. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62-93. [CrossRef]
- Pasare, S.; Wright, K.; Campbell, R.; Morris, W.; Ducreux, L.; Chapman, S.; Bramley, P.; Fraser, P.; Roberts, A.; Taylor, M. The sub-cellular localisation of the potato (Solanum tuberosum L.) carotenoid biosynthetic enzymes, CrtRb2 and PSY2. Protoplasma. 2013, 250(6), 1381-1392. [CrossRef]
- Iwanzik, W.; Tevini, M.; Stute, R.; Hilbert, R. Carotinoidgehalt und-zusammensetzung verschiedener deutscher Kartoffelsorten und deren Bedeutung für die Fleischfarbe der Knolle. Potato Res. 1983, 26, 149–162. [CrossRef]
- Brown, C.R.; Edwards, C.G.; Yang, C.; Dean, B.B. Orange Flesh Trait in Potato: Inheritance and Carotenoid Content. J. Amer. Soc. Hort. Sci. 1993, 118(1), 145-150. doi: 10.21273/JASHS.118.1.145.
- Lu, W.; Haynes, K.; Wiley, E., Clevidence, B. Carotenoid Content and Color in Diploid Potatoes. J. Amer. Soc. Hort. Sci. 2001, 126(6), 722-726. doi: 10.21273/JASHS.126.6.722.
- Andre, C.M.; Oufir, M.; Guignard, C.; Hoffmann, L.; Hausman, J.F.; Evers, D.; Larondelle, Y. Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of beta-carotene, alpha-tocopherol, chlorogenic acid, and petanin. J. Agric. Food Chem. 2007, 55(26), 10839-10849. [CrossRef]
- Burgos, G.; Salas, E.; Amoros, W.; Auqui, M.; Munoa, L.; Kimura, M.; Bonierbale, M. Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. J. Food Comp. Anal. 2009, 22, 503–508. doi: 10.1016/j.jfca.2008.08.008.
- Tatarowska, B., Milczarek, D.; Wszelaczyńska, E.; Pobereżny, J.; Keutgen, N.; Keutgen, A.J.; Flis, B. Carotenoids Variability of Potato Tubers in Relation to Genotype, Growing Location and Year. Am. J. Potato Res. 2019, 96, 493–504. [CrossRef]
- Fernandez-Orozco, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Food Chem. 2013, 141(3), 2864-72. [CrossRef]
- Griffiths, D.W.; Dale, M.F.; Morris, W.L.; Ramsay, G. Effects of season and postharvest storage on the carotenoid content of Solanum phureja potato tubers. J. Agric. Food Chem. 2007, 55(2), 379-85. [CrossRef]
- Brown, C.R.; Culley, D.; Bonierbale, M.; Amoro´s, W. Anthocyanin, carotenoid content, and antioxidant values in native South American potato cultivars. HortScience. 2007, 42, 1733–1736. doi: 10.21273/HORTSCI.42.7.1733.
- Bonierbale, M.; Grüneberg, W.; Amoros, W.; Burgos, G., Salas, E.; Porras, E.; Zum Felde, T. Total and individual carotenoid profiles in Solanum phureja cultivated potatoes: II. Development and application of near-infrared reflectance spectroscopy (NIRS) calibrations for germplasm characterization. J. Food Compos. Anal. 2009, 22, 509–516. [CrossRef]
- Cuéllar-Cepeda, F.A.; Parra-Galindo, M.A.; Urquijo, J.; Restrepo-Sánchez, L.P.; Mosquera-Vásquez, T.; Narváez-Cuenca, C.E. Influence of genotype, agro-climatic conditions, cooking method, and their interactions on individual carotenoids and hydroxycinnamic acids contents in tubers of diploid potatoes. Food Chem. 2019, 288, 127-138. [CrossRef]
- Breithaupt, D.E.; Bamedi, A. Carotenoids and carotenoid esters in potatoes (Solanum tuberosum L.): new insights into an ancient vegetable. J. Agric. Food Chem. 2002, 50(24), 7175-7181. [CrossRef]
- Nesterenko, S.; Sink, K.C. Carotenoid Profiles of Potato Breeding Lines and Selected Cultivars. HortScience. 2003, 38(6), 1173-1177. doi: 10.21273/HORTSCI.38.6.1173.
- Morris, W.L.; Ducreux, L.; Griffiths, D.W.; Stewart, D.; Davies, H.V.; Taylor, M.A. Carotenogenesis during tuber development and storage in potato. J. Exp. Bot. 2004, 55(399), 975-82. [CrossRef]
- Haynes, K.G.; Clevidence, B.A.; Rao, D.; Vinyard, B.T.; White, J.M. Genotype × Environment Interactions for Potato Tuber Carotenoid Content. J. Amer. Soc. Hort. Sci. 2010, 135(3), 250-258. doi: 10.21273/JASHS.135.3.250.
- Hejtmánková, K.; Kotikova, Z.; Hamouz, K.; Pivec ,V.; Vacek, J.; Lachman, J. Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. J. Food Compos. Anal. 2013, 32, 20–27. doi: 10.1016/j.jfca.2013.07.001.
- Sulli, M.; Mandolino, G.; Sturaro, M.; Onofri, C.; Diretto, G.; Parisi, B.; Giuliano, G. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS One. 2017, 12(9), e0184143. [CrossRef]
- Kotíková, Z.; Šulc, M.; Lachman, J.; Pivec, V.; Orsák, M.; Hamouz, K. Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing. Food Chem. 2016, 197(Pt A), 992-1001. [CrossRef]
- Kobayashi, A.; Ohara-Takada, A.; Tsuda, S.; Matsuura-Endo, C.; Takada, N.; Umemura, Y.; Nakao, T.; Yoshida, T.; Hayashi, K.; Mori, M. Breeding of potato variety “Inca-no-hitomi” with a very high carotenoid content. Breed. Science. 2008, 58(1), 77-82. [CrossRef]
- Zhou, X.; McQuinn, R.; Fei, Z.; Wolters, A.A.; Van Eck, J.; Brown, C.; Giovannoni, J.J.; Li, L.I. Regulatory control of high levels of carotenoid accumulation in potato tubers. Plant Cell Environ. 2011, 34(6), 1020-1030. [CrossRef]
- Kotíková, Z.; Hejtmánková, A.; Lachman, J.; Hamouz, K.; Trnková, E.; Dvořák, P. Effect of selected factors on total carotenoid content in potato tubers (Solanum tuberosum L.). Plant Soil Environ. 2007, 53(8), 355-360. doi: 10.17221/2214-PSE.
- Reddivari, L.; Hale, A.L.; Miller, J.C. Jr. Genotype, location, and year influence antioxidant activity, carotenoid content, phenolic content, and composition in specialty potatoes. J. Agric. Food Chem. 2007, 55(20), 8073-8079. [CrossRef]
- Haynes, K.G.; Clevidence, B.A.; Rao, D.; Vinyard, B.T. Inheritance of Carotenoid Content in Tetraploid × Diploid Potato Crosses. J. Amer. Soc. Hort. Sci. 2011, 136(4), 265-272. doi: 10.21273/JASHS.136.4.265.
- Payyavula, R.S.; Navarre, D.A.; Kuhl, J.C.; Pantoja, A.; Pillai, S.S. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol. 2012, 12, 39. [CrossRef]
- Hamouz, K.; Pazderů, K.; Lachman, J.; Čepl, J.; Kotíková, Z. Effect of cultivar, flesh colour, locality and year on carotenoid content in potato tubers. Plant Soil Environ. 2016, 62(2), 86-91. [CrossRef]
- Tatarowska, B.; Milczarek, D.; Jakuczun, H.; Stochmal, A.; Pecio, Ł.; Flis, B. The potential for the improvement of carotenoid level in potato-effect of the genotype and environment. J. Food Agric. Environ. 2014, 12(2), 536-540. doi: 10.1234/4.2014.5193.
- Vaitkevičienė, N.; Kulaitienė, J.; Jarienė, E.; Levickienė, D.; Danillčenko, H.; Średnicka-Tober, D.; Rembiałkowska, E.; Hallmann, E. Characterization of Bioactive Compounds in Colored Potato (Solanum Tuberosum L.) Cultivars Grown with Conventional, Organic, and Biodynamic Methods. Sustainability. 2020, 12(7), 2701. [CrossRef]
- Kazimierczak, R.; Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Zarzyńska, K. The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy. 2019, 9(12), 799. doi: 10.3390/agronomy9120799.
- Blessington, T.; Nzaramba, M.N.; Scheuring, D.C.; Hale, A.L.; Reddivari, L.; Miller, J.C. Cooking Methods and Storage Treatments of Potato: Effects on Carotenoids, Antioxidant Activity, and Phenolics. Am. J. Pot. Res. 2010, 87, 479–491. [CrossRef]
- Burgos, G.; Amoros, W.; Salas, E.; Muñoa, L.; Sosa, P.; Díaz, C.; Bonierbale, M. Carotenoid concentrations of native Andean potatoes as affected by cooking. Food Chem. 2012, 133(4), 1131-1137. doi: 10.1016/j.foodchem.2011.09.002.
- Tian, J.; Chen, J.; Lv, F.; Chen, S.; Chen, J.; Liu, D.; Ye, X. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chem. 2016, 197 Pt B, 1264-1270. [CrossRef]
- Andre, C.M.; Schafleitner, R.; Guignard, C.; Oufir, M.; Aliaga, C.A.; Nomberto, G.; Hoffmann, L.; Hausman, J.F.; Evers D.; Larondelle Y. Modification of the health-promoting value of potato tubers field grown under drought stress: emphasis on dietary antioxidant and glycoalkaloid contents in five native andean cultivars (Solanum tuberosum L.). J. Agric. Food Chem. 2009, 57(2), 599-609. [CrossRef]
- Campbell, R.; Morris, W.L.; Mortimer, C.L.; Misawa, N.; Ducreux, L.J.; Morris, J.A.; Hedley, P.E.; Fraser, P.D.; Taylor, M.A. Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sci. 2015, 234, 27-37. [CrossRef]
- Bonierbale, M.W.; Plaisted, R.L.; Tanksley, S.D. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics. 1988, 120(4), 1095-1103. [CrossRef]
- Campbell, R.; Pont, S.D.; Morris, J.A.; McKenzie, G.; Sharma, S.K.; Hedley, P.E.; Ramsay, G.; Bryan, G.J.; Taylor, M.A. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theor. Appl. Genet. 2014, 127(9), 1917-1933. [CrossRef]
- D'hoop, B.B.; Keizer, P.L.; Paulo, M.J.; Visser, R.G.; van Eeuwijk, F.A.; van Eck, H.J. Identification of agronomically important QTL in tetraploid potato cultivars using a marker-trait association analysis. Theor. Appl. Genet. 2014, 127(3), 731-748. [CrossRef]
- Sharma, S.K.; MacKenzie, K.; McLean, K.; Dale, F.; Daniels, S.; Bryan, G.J. Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato. G3 (Bethesda). 2018, 8(10), 3185-3202. [CrossRef]
- Pandey, J.; Scheuring, D.C.; Koym, J.W.; Vales, M.I. Genomic regions associated with tuber traits in tetraploid potatoes and identification of superior clones for breeding purposes [published correction appears in Front. Plant. Sci. 2024, 22, 15:1396479. doi: 10.3389/fpls.2024.1396479]. Front. Plant Sci. 2022, 13, 952263. [CrossRef]
- D’hoop, B.B.; Paulo, M.J.; Mank, R.; van Eck, H.J.; van Eeuwijk, F.A. Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica. 2008, 161, 47–60. [CrossRef]
- Śliwka, J.; Wasilewicz-Flis, I.; Jakuczun, H.; Gebhardt, C. Tagging quantitative trait loci for dormancy, tuber shape, regularity of tuber shape, eye depth and flesh colour in diploid potato originated from six Solanum species. Plant Breed. 2008, 127, 49-55. doi: 10.1111/j.1439-0523.2008.01420.x.
- Liu, Y.S.; Gur, A.; Ronen, G.; Causse, M.; Damidaux, R.; Buret, M.; Hirschberg, J.; Zamir, D. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 2003, 1(3), 195-207. [CrossRef]
- Thorup, T.A.; Tanyolac, B.; Livingstone, K.D.; Popovsky, S.; Paran, I.; Jahn, M. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. U.S.A. 2000, 97(21), 11192-11197. [CrossRef]
- Cazzonelli, C.I.; Pogson, B.J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010, 15(5), 266-274. [CrossRef]
- Ducreux, L.J.; Morris, W.L.; Hedley, P.E.; Shepherd, T.; Davies, H.V.; Millam, S.; Taylor, M.A. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J. Exp. Bot. 2005, 56(409), 81-89. [CrossRef]
- Römer, S.; Lübeck, J.; Kauder, F.; Steiger, S.; Adomat, C.; Sandmann, G. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab. Eng. 2002, 4(4), 263-272. doi:.10.1006/mben.2002.0234.
- Goo, Y.M.; Kim, T.W.; Ha, S.H.; Back, K.W.; Bae, J.M.; Shin, Y.W.; Lee, C.H.; Ahn, M.J.; Lee, S.W. Expression Profiles of Genes Involved in the Carotenoid Biosynthetic Pathway in Yellow-Fleshed Potato Cultivars (Solanum tuberosum L.) from South Korea. J. Plant Biol. 2009, 52, 49–55. doi: 10.1007/s12374-008-9003-9.
- Valcarcel, J.; Reilly, K.; Gaffney, M.; O'Brien, N.M. Levels of potential bioactive compounds including carotenoids, vitamin C and phenolic compounds, and expression of their cognate biosynthetic genes vary significantly in different varieties of potato (Solanum tuberosum L.) grown under uniform cultural conditions. J. Sci. Food Agric. 2016, 96(3), 1018-1026. [CrossRef]
- Brown, C.R.; Kim, T.S.; Ganga, Z.; Haynes, K.; De Jong, D.; Jahn, M.; Paran, I.; De Jong, W. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am. J. Pot. Res. 2006, 83, 365–372. [CrossRef]
- Kloosterman, B.; Oortwijn, M.; uitdeWilligen, J.; America, T.; de Vos, R.; Visser, R.G.; Bachem, C.W. From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics. 2010, 11, 158. [CrossRef]
- Diretto, G.; Welsch, R.; Tavazza, R.; Mourgues, F.; Pizzichini, D.; Beyer, P.; Giuliano, G. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol. 2007, 7, 11. [CrossRef]
- Wolters, A.M.; Uitdewilligen, J.G.; Kloosterman, B.A.; Hutten, R.C.; Visser, R.G.; van Eck, H.J. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol. Biol. 2010, 73(6), 659-671. [CrossRef]
- Zhang, Z.; Zhou, D.; Li, S.; Pan, J.; Liang, J.; Wu, X.; Wu, X.N.; Krall, L.; Zhu, G. Multiomics Analysis Reveals the Chemical and Genetic Bases of Pigmented Potato Tuber. J. Agric. Food Chem. 2003, 71(43), 16402–16416. [CrossRef]
- Van Eck, J.; Conlin, B.; Garvin, D.F.; Mason, H.; Navarre, D.A.; Brown, C.R. Enhancing beta-carotene content in potato by rnai-mediated silencing of the beta-carotene hydroxylase gene. Amer. J. Potato Res. 2007, 84, 331–342. [CrossRef]
- Brown, C.R.; Durst, R.W.; Wrolstad, R.; De Jong, W. Variability of Phytonutrient Content of Potato in Relation to Growing Location and Cooking Method. Potato Res. 2008, 51, 259–270. doi: 10.1007/s11540-008-9115-0.
- Tatarowska, B.; Milczarek, D.; Plich, J. The Content of Total Carotenoids, Vitamin C and Antioxidant Properties of 65 Potato Cultivars Characterised under the European Project ECOBREED. Int. J. Mol. Sci. 2023, 24(14), 11716. [CrossRef]
- Tang, D.; Jia, Y.; Zhang, J.; Li, H.; Cheng, L.; Wang, P.; Bao, Z.; Liu, Z.; Feng, S.; Zhu, X.; Li, D.; Zhu, G.; Wang, H.; Zhou, Y.; Zhou, Y.; Bryan, G.J.; Buell, C.R.; Zhang, C.; Huang, S. Genome evolution and diversity of wild and cultivated potatoes. Nature. 2022, 606(7914), 535-541. [CrossRef]
- McCord, P.; Zhang, L.; Brown, C. The Incidence and Effect on Total Tuber Carotenoids of a Recessive Zeaxanthin Epoxidase Allele (Zep1) in Yellow-fleshed Potatoes. Am. J. Pot. Res. 2012, 89, 262–268. doi: 10.1007/s12230-012-9250-7.
- Diretto, G.; Tavazza, R.; Welsch, R.; Pizzichini, D.; Mourgues, F.; Papacchioli, V.; Beyer, P.; Giuliano, G. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 2006, 6, 13. [CrossRef]
- Ohmiya, A.; Kishimoto, S.; Aida, R.; Yoshioka, S.; Sumitomo, K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals [published correction appears in Plant Physiol. 2016 Oct;172(2):1353doi: 10.1104/pp.16.01388]. Plant Physiol. 2006, 142(3), 1193-1201. [CrossRef]
- Campbell, R.; Ducreux, L.J.; Morris, W.L.; Morris, J.A.; Suttle, J.C.; Ramsay, G.; Bryan, G.J.; Hedley, P.E.; Taylor, M.A. The metabolic and developmental roles of carotenoid cleavage dioxygenase4 from potato. Plant Physiol. 2010, 154(2), 656-664. [CrossRef]
- Bruno, M.; Beyer, P.; Al-Babili, S. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Arch. Biochem. Biophys. 2015, 572, 126-133. [CrossRef]
- Babenko, L.M.; Shcherbatiuk, M.M.; Skaterna, T.D.; Kosakivska, I.V. Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr. Biochem. J. 2017, 89(1), 5–21. [CrossRef]
- Wu, Z.; Robinson, D.S.; Hughes, R.K.; Casey, R.; Hardy, D.; West, S.I. Co-oxidation of beta-carotene catalyzed by soybean and recombinant pea lipoxygenases. J. Agric. Food Chem. 1999, 47(12), 4899–4906. [CrossRef]
- Chedea, V. S.; Jisaka, M. Lipoxygenase and carotenoids: A co-oxidation story. Afr. J. Biotechnol. 2013, 12(20), 2786-2791. [CrossRef]
- Gayen, D.; Ali, N.; Sarkar, S.N.; Datta, S.K.; Datta, K. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage. Planta. 2015, 242(1), 353-363. [CrossRef]
- Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanliaud, E.; Remesy, C. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J. Agri. Food Chem. 2006, 54,1710–1715. [CrossRef]
- Galliard, T.; Phillips, D.R. Lipoxygenase from potato tubers. Partial purification and properties of an enzyme that specifically oxygenates the 9-position of linoleic acid. Biochem. J. 1971, 124(2), 431-438. [CrossRef]
- Royo, J.; Vancanneyt, G.; Pérez, A.G.; Sanz, C.; Störmann, K.; Rosahl, S.; Sánchez-Serrano, J.J. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J. Biol. Chem. 1996, 271(35), 21012-21019. [CrossRef]
- Kolomiets, M.V.; Hannapel, D.J.; Chen, H.; Tymeson, M.; Gladon, R.J. Lipoxygenase is involved in the control of potato tuber development. Plant Cell. 2001, 13(3), 613-626. [CrossRef]
- Petersen, M.A.; Poll, L.; Larsen, L.M. Changes in flavor-affecting aroma compounds during potato storage are not associated with lipoxygenase activity. Am. J. Pot. Res. 2003, 80, 397–402. [CrossRef]
- Li, L.; Paolillo, D.J.; Parthasarathy, M.V.; Dimuzio, E.M.; Garvin, D.F. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 2001, 26(1), 59-67. [CrossRef]
- Lu, S.; Van Eck, J.; Zhou, X.; Lopez, A.B.; O'Halloran, D.M.; Cosman, K.M.; Conlin, B.J.; Paolillo, D.J.; Garvin, D.F.; Vrebalov, J.; Kochian, L.V.; Küpper, H.; Earle, E.D.; Cao, J.; Li, L. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell. 2006, 18(12), 3594-3605. [CrossRef]
- Lopez, A.B.; Van Eck, J.; Conlin, B.J.; Paolillo, D.J.; O'Neill, J.; Li, L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot. 2008, 59(2), 213-223. [CrossRef]
- Li, L.; Yang, Y.; Xu, Q.; Owsiany, K.; Welsch, R.; Chitchumroonchokchai, C.; Lu, S.; Van Eck, J.; Deng, X.X.; Failla, M.; Thannhauser, T.W. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol. Plant. 2012, 5(2), 339-352. [CrossRef]
- Tzuri, G.; Zhou, X.; Chayut, N.; Yuan, H.; Portnoy, V.; Meir, A.; Sa'ar, U.; Baumkoler, F.; Mazourek, M.; Lewinsohn, E.; Fei, Z.; Schaffer, A.A.; Li, L.; Burger, J.; Katzir, N.; Tadmor, Y. A 'golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo) [published correction appears in Plant J. 2015 Sep;83(5):940doi: 10.1111/tpj.12950]. Plant J. 2015, 82(2), 267-279. [CrossRef]
- Kang, L.; Zhang, C.; Liu, J.; Ye, M.; Zhang, L.; Chen, F.; Lin, X.; Yang, D.; Ren, L.; Li, Y.; Kim, H.S.; Kwak, S.S.; Li, H.; Deng, X.; Zhang, P.; Ke, Q. Overexpression of potato ORANGE (StOR) and StOR mutant in Arabidopsis confers increased carotenoid accumulation and tolerance to abiotic stress. Plant Physiol. Biochem. 2023, 201, 107809. [CrossRef]
- Diretto, G.; Al-Babili, S.; Tavazza, R.; Papacchioli, V.; Beyer, P.; Giuliano G. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One. 2007, 2(4), e350. [CrossRef]
- Song, X.Y.; Zhu, W.J.; Tang, R.M.; Cai, J.H.; Chen, M.; Yang, Q. Over-expression of StLCYb increases β-carotene accumulation in potato tubers. Plant Biotechnol. Rep. 2016, 10, 95-104. [CrossRef]
- Morris, W.L.; Ducreux, L.J.; Hedden, P.; Millam, S.; Taylor, M.A. Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. J. Exp. Bot. 2006, 57(12), 3007-3018. [CrossRef]
- Gerjets, T.; Sandmann, G. Ketocarotenoid formation in transgenic potato. J. Exp. Bot. 2006, 57(14), 3639-3645. [CrossRef]
- Morris, W.L.; Ducreux, L.J.; Fraser, P.D.; Millam, S.; Taylor, M.A. Engineering ketocarotenoid biosynthesis in potato tubers. Metab. Eng. 2006, 8(3), 253-263. [CrossRef]
- Butler, N.M.; Jansky, S.H.; Jiang, J. First-generation genome editing in potato using hairy root transformation. Plant Biotechnol. J. 2020, 18(11), 2201-2209. [CrossRef]
- Kaur, N.; Alok, A.; Shivani; Kumar, P.; Kaur, N.; Awasthi, P.; Chaturvedi, S.; Pandey, P.; Pandey, A.; Pandey, A.K.; Tiwari, S. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab. Eng. 2020, 59, 76-86. [CrossRef]
- Pogson, B.; McDonald, K.A.; Truong, M.; Britton, G.; DellaPenna, D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell. 1996, 8(9), 1627-1639. [CrossRef]
- Dall'Osto, L.; Lico, C.; Alric, J.; Giuliano, G.; Havaux, M.; Bassi, R. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol. 2006, 6, 32. [CrossRef]
- Stanley, L.; Yuan, Y.W. Transcriptional Regulation of Carotenoid Biosynthesis in Plants: So Many Regulators, So Little Consensus. Front. Plant Sci. 2019, 10, 1017. [CrossRef]
- Sun, T.; Li, L. Toward the 'golden' era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Sci. 2020, 290, 110331. [CrossRef]
- Kachanovsky, D.E.; Filler, S.; Isaacson, T.; Hirschberg, J. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc. Natl. Acad. Sci. U.S. A. 2012, 109(46), 19021-19026. [CrossRef]
- Zierer, W.; Rüscher, D.; Sonnewald, U., Sonnewald, S. Tuber and Tuberous Root Development. Annu. Rev. Plant Biol. 2021, 72, 551-580. [CrossRef]
- Beecher, GR. Nutrient content of tomatoes and tomato products. Proc. Soc. Exp. Biol. Med. 1998, 218(2), 98-100. [CrossRef]
- Ha, S.H.; Kim, J.B.; Park, J.S.; Lee, S.W.; Cho, K.J. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 2007, 58(12), 3135-3144. [CrossRef]
- Liu, Y.; Roof, S.; Ye, Z.; Barry, C.; van Tuinen, A.; Vrebalov, J.; Bowler, C., Giovannoni, J. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. U.S.A. 2004, 101(26), 9897-9902. [CrossRef]
- Llorente, B.; Martinez-Garcia, J.F.; Stange, C.; Rodriguez-Concepcion, M.. Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Curr. Opin. Plant Biol. 2017, 37, 49-55. [CrossRef]
- Galpaz, N.; Wan,g Q.; Menda, N.; Zamir, D.; Hirschberg, J. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 2008, 53(5), 717-730. [CrossRef]
- Duckham, S.C.; Linforth, R.S.T.; Taylor, I.B. (1991), Abscisic-acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Env. 1991, 14, 601-606. doi: 10.1111/j.1365-3040.1991.tb01531.x.
- Zhou, X., Welsch; R., Yang; Y., Álvarez, D.; Riediger, M.; Yuan, H.; Fish, T.; Liu, J.; Thannhauser, T.W.; Li, L. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2015, 112(11), 3558-63. [CrossRef]
- Borch, D.; Juul-Hindsgaul, N.; Veller, M.; Astrup, A.; Jaskolowski, J.; Raben, A. Potatoes and risk of obesity, type 2 diabetes, and cardiovascular disease in apparently healthy adults: a systematic review of clinical intervention and observational studies. Am. J. Clin. Nutr. 2016, 104(2), 489-498. [CrossRef]
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition--A Review. Crit. Rev. Food Sci. Nutr. 2016, 56(5), 711-21. [CrossRef]
- Brown, C.R.; Culley, D.; Yang, C.; Durst, R.; Wrolstad, R. Variation of Anthocyanin and Carotenoid Contents and Associated Antioxidant Values in Potato Breeding Lines. J. Amer. Soc. Hort. Sci. 2005, 130(2), 174-180. [CrossRef]
- Bvenura, C.; Witbooi, H.; Kambizi, L. Pigmented Potatoes: A Potential Panacea for Food and Nutrition Security and Health?. Foods. 2022, 11(2), 175. [CrossRef]
- Podevin, N.; Devos, Y.; Davies, H.V.; Nielsen, K.M. Transgenic or not? No simple answer! New biotechnology-based plant breeding techniques and the regulatory landscape. EMBO Rep. 2012, 13(12), 1057-1061. [CrossRef]
- Ahmad, A.; Munawar, N.; Khan, Z.; Qusmani, A.T.; Khan, S.H.; Jamil, A.; Ashraf, S.; Ghouri, M.Z.; Aslam, S.; Mubarik, M.S.; Munir, A.; Sultan, Q.; Abd-Elsalam, K.A.; Qari, S.H. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int. J. Mol. Sci. 2021, 22(21), 11753. [CrossRef]
- Entine, J.; Felipe, M.S.S.; Groenewald, J.H.; Kershen, D.L.; Lema, M.; McHughen, A.; Nepomuceno, A.L.; Ohsawa, R.; Ordonio, R.L.; Parrott, W.A.; Quemada, H.; Ramage, C.; Slamet-Loedin, I.; Smyth, S.J.; Wray-Cahen, D. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res. 2021, 30(4), 551-584. [CrossRef]
- Qu, L.; Huang, X.; Su, X.; Zhu, G.; Zheng, L.; Lin, J.; Wang, J.; Xue H. Potato: from functional genomics to genetic improvement. Mol. Hortic. 2024, 4(1), 34. [CrossRef]
- Jansky, S. Overcoming hybridization barriers in potato. Plant breed. 2006, 125(1), 1-12. doi: 10.1111/j.1439-0523.2006.01178.x.
- Krunic, S.L.; Skryhan, K.; Mikkelsen, L.; Ruzanski, C.; Shaik, S.S.; Kirk, H.G.; Palcic, M.; Blennow, A. Non-GMO potato lines with an altered starch biosynthesis pathway confer increased-amylose and resistant starch properties. Starch-Stärke. 2018, 70(1-2), 1600310. doi: 10.1002/star.201600310.
- Rakosy-Tican, E.; Thieme, R.; König, J.; Nachtigall, M.; Hammann, T.; Denes, T.E.; Kruppa, K.; Molnár-Láng, M. Introgression of Two Broad-Spectrum Late Blight Resistance Genes, Rpi-Blb1 and Rpi-Blb3, From Solanum bulbocastanum Dun Plus Race-Specific R Genes Into Potato Pre-breeding Lines. Front. Plant Sci. 2020, 11, 699. [CrossRef]
- Sakamoto, Y.; Mori, K.; Matsuo, Y.; Mukojima, N.; Watanabe, W.; Sobaru, N.; Tamiya, S.; Nakao, T.; Hayashi, K.; Watanuki, H.; Nara, K.; Yamazaki, K.; Chaya, M. Breeding of a new potato variety 'Nagasaki Kogane' with high eating quality, high carotenoid content, and resistance to diseases and pests. Breed. Sci. 2017, 67(3), 320-326. [CrossRef]
- Sun, H.; Jiao, W.B.; Krause, K.; Campoy, J.A.; Goel, M.; Folz-Donahue, K.; Kukat, C.; Huettel, B.; Schneeberger, K. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 2022, 54(3), 342-348. [CrossRef]
- Hoopes, G.; Meng, X.; Hamilton, J.P.; Achakkagari, S.R.; de Alves Freitas Guesdes, F.; Bolger, M.E.; Coombs, J.J.; Esselink, D.; Kaiser, N.R.; Kodde, L.; Kyriakidou, M.; Lavrijssen, B.; van Lieshout, N.; Shereda, R.; Tuttle, H.K.; Vaillancourt, B.; Wood, J.C.; de Boer, J.M.; Bornowski, N.; Bourke, P.; Douches, D.; van Eck, H.J.; Ellis, D.; Feldman, M.J.; Gardner, K.M.; Hopman, J.C.P.; Jiang, J.; De Jong, W.S.; Kuhl, J.C.; Novy, R.G.; Oome, S.; Sathuvalli, V.; Tan, E.H.; Ursum, R.A.; Vales, M.I.; Vining, K.; Visser, R.G.F.; Vossen, J.; Yencho, G.C.; Anglin, N.L.; Bachem, C.W.B.; Endelman, J.B.; Shannon, L.M.; Strömvik, M.V.; Tai, H.H.; Usadel, B.; Buell, C.R.; Finkers, R. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. Mol. Plant. 2022, 15(3), 520-536. [CrossRef]
- Wang, F.; Xia, Z.; Zou, M.; Zhao, L.; Jiang, S.; Zhou, Y.; Zhang, C.; Ma, Y.; Bao, Y.; Sun, H.; Wang, W.; Wang, J. The autotetraploid potato genome provides insights into highly heterozygous species. Plant Biotechnol. J. 2022, 20(10), 1996-2005. [CrossRef]
- Bao, Z.; Li, C.; Li, G.; Wang, P.; Peng, Z.; Cheng, L.; Li, H.; Zhang, Z.; Li, Y.; Huang, W.; Ye, M.; Dong, D.; Cheng, Z.; VanderZaag, P.; Jacobsen, E.; Bachem, C.W.B.; Dong, S.; Zhang, C.; Huang, S.; Zhou, Q. Genome architecture and tetrasomic inheritance of autotetraploid potato [published correction appears in Mol Plant. 2023 Nov 6;16(11):18661866. doi: 10.1016/j.molp.2023.10.005]. Mol. Plant. 2022, 15(7), 1211-1226. [CrossRef]
- Lindhout, P.; Meijer, D.; Schotte, T.; Hutten, R.C.B.; Visser, R.G.F.; van Eck, H.J. Towards F1 Hybrid Seed Potato Breeding. Potato Res. 2011, 54, 301–312 (2011). doi: 10.1007/s11540-011-9196-z.
- Zhang, C.; Yang, Z.; Tang, D.; Zhu, Y.; Wang, P.; Li, D.; Zhu, G.; Xiong, X.; Shang, Y.; Li, C.; Huang, S. Genome design of hybrid potato. Cell. 2021, 184(15), 3873-3883.e12. [CrossRef]

| Taxonomic group (ploidy) | Flesh color (n.) |
TCC | Major components1 | Minor components1 | Refs. |
| S. tuberosum (4n) | W (3) Y (6) DY (4) |
27-74 61 -157 171-343 µg/100g FW |
Lute, Viola Lute-ep. Viola, Lute, Lute-ep., Neo Viola, Lute, Lute-ep., Neo |
Neo, β-Car |
[22] |
|
S. tuberosum (4n) S. phureja x S. stenotomum (2n) |
W (2) Y (11) |
64 and 136 111-1435 µg/100g FW |
Lute, Viola, Lute-ep., Neo Lute-ep., Viola, Lute |
Zea Neo, Zea |
[24] |
| S. tuberosum (4n) | W (4) Y (4) |
38-62 58-175 µg/100g FW |
All: Viola, Anthe, Lute, Zea in different ratios |
All: Neo, β-Cripto, β-Car | [33] |
|
S. tuberosum (4n) S. phureja x S. stenotomum (2n) |
W (7) Y (11) O (1) |
38-265 107-260 878 µg/100g FW |
Lute, Viola Viola, Lute Zea, Anthe, Viola, Lute |
Anthe Neo, Anthe β-Cripto, β-Car |
[34] |
|
S. tuberosum ssp andigena (4n) S. ajanhuiri (2n) S. juzpeczukii (3n) S. phureja (2n) S. stenotomum (2n) |
W (6) C (9) Y (7) P (1) |
1.78-17.90 5.35-18.28 18.85-54.78 16.35 µg/g DW |
All: Lute, Neo, Viola, Zea in different ratios |
All: β-Car, Anthe, β-Cripto |
[25] |
| S. phureja (2n) | C/LY (9) LY/Y (8) Y/DY (6) |
97-262 682-1270 1258-1840 µg/100g FW |
Lute, Viola, Anthe, β-Car Viola, Anthe, Lute, Zea Zea, Anthe |
Zea β-Car Lute, Viola, β-Car |
[26] |
|
S. tuberosum (4n) |
W (3) Y (6) |
101-145 218-511 µg /100g FW |
Lute, Anthe, Viola Anthe, Viola, Zea, Neo |
Zea, Neo Lute |
[36] |
|
S. tuberosum (4n) S. tuberosum ssp andigena (4n) S. phureja (2n) S. stenotomum (2n) S. goniocalix (2n) |
W-P (1) LY (8) Y (46) P-W (5) |
1.66 0.77-6.33 0.54-15.51 0.84-3.27 µg/g DW |
Lute, Neo Lute, Neo or Viola, Neo Viola, Neo Lute, Neo, Viola |
All: Anthe, β-Car, β-Cripto | [28] |
|
S. tuberosum (4n) S. phureja (2n) |
W (2) Y (3) R/P (12) |
All: from 0.779 (W) to 13.3 (Y) µg /g DW |
All: Lute |
All: Viola, Neo, Zea, β-Car | [37] |
|
S. tuberosum (4n) S. chacoense (2n) S. phureja (2n) |
W (2) Y (5) O (3) |
1.37 and 4.1 13.83-32.12 17.42-26.89 µg /g DW |
Lute, Anthe, Neo and Viola, Lute Anthe, Viola, Lute, Zea Zea, Anthe, Lute, |
β-Car, Zea Neo, β-Car Viola, Neo, β-Car |
[38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).