Preprint
Article

Trigonometric Polynomial Points in the Plane of a Triangle

This version is not peer-reviewed.

Submitted:

18 November 2024

Posted:

19 November 2024

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
It is well known that the four ancient Greek triangle centers and others have homogeneous barycentric coordinates that are polynomials in the sidelengths a; b; c of a triangle ABC. For example, the circumcenter is represented by the polynomial a(b2 + c2 - a2). It is not so well known that triangle centers having barycentric coordinates such as tanA : tanB : tanC are also representable by polynomials, in this case, by p(a; b; c) : p(b; c; a) : p(c; a; b), where p(a; b; c) = a(a2 + b2 - c2)(a2 + c2 - b2). This paper presents and discusses polynomial representations of triangle centers that have barycentric coordinates of the form f(a; b; c) : f(b; c; a) : f(c; a; b), where f depends on one or more of the functions in the set fcos; sin; tan; sec; csc; cotg. The topics discussed include innite trigonometric orthopoints, the n-Euler line, and symbolic substitution.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

MSC:  51N20; 51M05

1. Introduction

One of the most productive systems of representation for points and lines in the plane of a triangle A B C is a system widely known as homogeneous barycentric coordinates (henceforth simply barycentrics). Serving as the “origin” in this system are the three vertices of A B C , shown here with their barycentrics:
A = 1 : 0 : 0 B = 0 : 1 : 0 C = 0 : 0 : 1 .
The lengths of the sides opposite the vertex angles (which, like the vertex points, are denoted by A , B , C ) are given the symbols a , b , c , respectively, and may be regarded as variables or algebraic indeterminates. For an excellent introduction to the subject of barycentrics, see Yiu [16].
Many triangle centers (as defined in [14]) have barycentrics that are polynomials. Following [5], we refer to a triangle center X that has barycentrics
p ( a , b , c ) : p ( b , c , a ) : p ( c , a , b ) ,
where p ( a , b , c ) is a polynomial, as a polycenter. If X also has barycentrics
f ( a , b , c ) : f ( b , c , a ) : f ( c , a , b ) ,
where f ( a , b , c ) involves trigonometric functions of the angles A , B , C as a trigonometric polycenter. Analogously, we have polylines and trigonometric polylines. Note that if the first barycentric of X is written as h ( a , b , c ) , than the second and third barycentrics are determined (viz. h ( b , c , a ) and h ( c , a , b ) ) , so that the shorter notation h ( a , b , c ) : : is sufficient.
Important examples of trigonometric polycenters include these:
G = centroid = 1 : 1 : 1 = 1 : : O = circumcenter = a 2 ( b 2 + c 2 a 2 ) : : = sin 2 A : : H = orthocenter = ( c 2 + a 2 b 2 ) ( a 2 + b 2 c 2 ) : : = tan A : : N = nine - point center = a 2 ( b 2 + c 2 ) ( b 2 c 2 ) 2 : : = sin A cos ( B C ) : :
As an example of a trigonometric polyline, the Euler line, which passes through the points G , O , H , N , is given in terms of a variable point x : y : z by both of the following equations:
  • ( b 2 c 2 ) ( b 2 + c 2 a 2 ) x + ( c 2 a 2 ) ( c 2 + a 2 b 2 ) y + ( a 2 b 2 ) ( a 2 + b 2 c 2 ) z = 0
  • ( tan B tan C ) x + ( tan C tan A ) y + ( tan A tan B ) z = 0
Of great importance in triangle geometry are the following objects:
  • isotomic conjugate of X, with barycentrics
    1 / x : 1 / y : 1 / z = y z : z x : x y
  • isogonal conjugate of X, with barycentrics
    a 2 / x : b 2 / y : c 2 / z = a 2 y z : b 2 z x : c 2 x y
  • the line at infinity, L , with barycentric equation x + y + z = 0
  • Steiner circumellipse, with equation 1 / x + 1 / y + 1 / z = 0
  • circumcircle, with equation a 2 / x + b 2 / y + c 2 / z = 0

2. Trigonometric Polycenters

In this section, we shall see that for all integers n, the triangle centers f ( n A ) : : for f = cos , sin , tan , and others, are polycenters. We begin with the usual recurrences of Chebyshev polynomials of the first kind, T n , and the second kind, U n :
T n ( x ) = 2 x T n 1 ( x ) T n 2 ( x ) for n 2 , T 0 ( x ) = 1 , T 1 ( x ) = x ;
U n ( x ) = 2 x U n 1 ( x ) U n 2 ( x ) for n 2 , U 0 ( x ) = 1 , U 1 ( x ) = 2 x ,
Another well-known type of recurrence relation for these families of polynomials ([12,13]) depends on complex numbers:
T n ( x ) = ( 1 / 2 ) ( x x 2 1 ) n + ( x + x 2 1 ) n
U n ( x ) = ( 1 / ( 2 x 2 1 ) ( x + x 2 1 ) n + 1 ( x x 2 1 ) n + 1 .
Theorem 1.
Let Λ = b 2 + c 2 a 2 . Then
cos n A : : = a n ( Λ 2 i S ) n + ( Λ + 2 i S ) n : :
sin n A : : = a n ( Λ 2 i S ) n ( Λ + 2 i S ) n : : .
Proof. 
We have cos A = Λ / ( 2 b c ) , and (3) gives
T n ( cos A ) = ( 1 / 2 ) ( cos A i sin A ) n + ( cos A + i sin A ) n = ( 1 / 2 ) ( Λ 2 b c i S b c ) n + ( Λ 2 b c + i S b c ) n ,
where
S = 2 ( area of A B C ) = ( 1 / 2 ) ( a + b + c ) ( b + c 1 ) ( c + a b ) ( a + b c ) ,
so that
S 2 = ( 1 / 4 ) ( a 4 b 4 c 4 + 2 b 2 c 2 + 2 c 2 a 2 + 2 a 2 b 2 ) .
Now since cos n A = T n ( cos A ) , we have
cos n A = ( 1 / 2 ) 1 ( 2 b c ) n ( Λ 2 i S ) n + ( Λ + 2 i S ) n ,
so that (5) holds. Similarly, Equation (6) follows from (4) and the well-known fact that sin n A = U n 1 ( cos A ) sin A .    □
Our main goal in this section is to represent cos n A : : and sin n A : : as polycenters. To that end, let
u = Λ 2 i S and v = Λ + 2 i S ,
so that expressions in (3) and () can be recast in order to define sequences ( c n ) and ( s n ) as follows:
c n = c n ( a , b , c ) = a n ( u n + v n )
s n = s n ( a , b , c ) = a n ( u n v n ) .
Next, we have a lemma about u and v.
Lemma 1.
u 2 2 ( b 2 + c 2 a 2 ) u + 4 b 2 c 2 = v 2 2 ( b 2 + c 2 a 2 ) v + 4 b 2 c 2 = 0 .
Proof. 
The imaginary terms cancel, and the real term is
( b 2 + c 2 a 2 ) 2 4 S 2 + 4 b 2 c 2 = 0 .
   □
Theorem 2.
Let ( c n ) be the sequence given by (8). Then c n is a polynomial in a , b , c , given by the following three initial terms and 2nd-order recurrence:
c 0 = 1 c 1 = a ( b 2 + c 2 a 2 ) c 2 = a 2 ( a 4 + b 4 + c 4 2 a 2 b 2 2 a 2 c 2 ) c n = a ( b 2 + c 2 a 2 ) c n 1 a 2 b 2 c 2 c n 2 for n 3 ,
and
c n ( a , b , c ) : c n ( b , c , a ) : c n ( c , a , b ) = cos n A : cos n B : cos n C .
Proof. 
It is easy to verify that c 0 , c 1 , c 2 are polycenters as claimed. Suppose now that n 3 . Using u and v as in (7) and Lemma 1, we have
u n 2 u 2 2 ( b 2 + c 2 a 2 ) u + 4 b 2 c 2 = v n 2 v 2 2 ( b 2 + c 2 a 2 ) v + 4 b 2 c 2 ,
so that
u n + v n = 2 ( b 2 + c 2 a 2 ) ( u n 1 + v n 1 ) a 2 b 2 c 2 ( a / 2 ) n 2 ( u n 2 + v n 2 ) ( a / 2 ) n ( u n + v n ) = a ( b 2 + c 2 a 2 ) ( a / 2 ) n 1 ( u n 1 + v n 1 ) 4 b 2 c 2 ( u n 2 + v n 2 ) .
This shows that if d k = ( a / 2 ) k ( u k + v k ) for k 3 , then
d n = a ( b 2 + c 2 a 2 ) d n 1 a 2 b 2 c 2 d n 2 for n 3 .
By Theorem 1, cos n A : : = a n ( u n + v n ) : : , and since d n : : = c n : : , we have c n : : = cos n A : : .    □
Theorem 3.
Let ( s n ) be the sequence given by (). Then s n is a polynomial in a , b , c , given by these two initial terms and 2nd-order recurrence:
s 1 = a s 2 = a 2 ( b 2 + c 2 a 2 ) s n = a ( b 2 + c 2 a 2 ) s n 1 a 2 b 2 c 2 s n 2 for n 2 ,
and
s n ( a , b , c ) : s n ( b , c , a ) : s n ( c , a , b ) = sin n A : sin n B : sin n C .
Proof. 
A proof similar to that of Theorem 2 springs from (), leading, by way of the identity sin n A = U n 1 ( cos A ) sin A , to
sin n A = 1 2 1 ( 2 b c ) n ( Λ 2 i S ) n ( Λ + 2 i S ) n ) ,
The rest of the proof, using Lemma 1, follows in a manner much as in the proof of Theorem 2.    □
Example 1.
Polycenter representations for cos 3 A : : and cos 4 A : : are given by
c 3 = a 3 ( a 2 b 2 c 2 ) a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) b 2 c 2 ; c 4 = a 4 ( a 8 + b 8 + c 8 4 a 6 ( b 2 + c 2 ) + 2 a 4 ( 3 b 4 + 3 c 4 + 4 b 2 c 2 ) 4 a 2 ( b 4 + c 4 ) ( b 2 + c 2 ) ) .
Example 2.
Polycenter representations for sin n A : : , for n = 3 , 4 , 5 , 6 , are given by
s 3 = a 3 ( a 2 b 2 c 2 b c ) ( a 2 b 2 c 2 + b c ) ; s 4 = a 4 ( a 2 b 2 c 2 ) a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) ; s 5 = a 5 f 1 f 2 , where f 1 = a 4 + b 4 + c 4 + a 2 ( b c 2 b 2 2 c 2 ) + b c ( b c b 2 c 2 ) f 2 = a 4 + b 4 + c 4 + a 2 ( b c 2 b 2 2 c 2 ) + b c ( b c + b 2 + c 2 ) ; s 6 = a 5 g 1 g 2 g 3 g 4 , where g 1 g 2 g 3 = ( a 2 b 2 c 2 ) ( a 2 b 2 c 2 b c ) ( a 2 b 2 c 2 + b c ) g 4 = a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) b 2 c 2 .
Inductively, c n and s n both have degree 3 n for n 0 and both are polynomial multiples of a n . By Theorems 2 and 3, the sequences ( c n ) and ( s n ) have the same second-order recurrence signature:
a ( b 2 + c 2 a 2 ) , a 2 b 2 c 2 .
Next, let t n = s n / c n , so that t n : : = tan n A : : . For the sake of brevity, we shall sometimes write a polycenter of the form f ( a , b , c ) g ( b , c , a ) g ( c , a , b ) as a quotient: f ( a , b , c ) / g ( a , b , c ) . Shown here are representations for polycenters tan n A : : for n = 1 , 2 , 3 .
t 1 = 1 / ( a 2 b 2 c 2 ) ; t 2 = ( a 2 b 2 c 2 ) / a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) ; t 3 = 1 / a 4 + b 4 + c 4 2 a 2 ) ( b 2 + c 2 ) b 2 c 2 ;
The sequence ( t n ) , as well as its equivalent sequence of polynomials, appears—expectedly—to be not linearly recurrent. However, the sequence given by u n ( a , b , c ) = sin ( n A ) cos ( n B ) cos ( n C ) , is linearly recurrent, since the three sequences ( sin ( n A ) ) , ( cos ( n B ) ) , ( cos ( n C ) ) are linearly recurrent, and, of course,
u n ( a , b , c ) : u n ( b , c , a ) : u n ( c , a , b ) = tan n A : tan n B : tan n C .
A sequence of associated polycenters derived from on u n ( a , b , c ) is considered in Section 7. Likewise the triangle centers sec n A : : , csc n A : : , cot n A : : are polycenters for all nonzero integers n. Geometrically, these are isotomic conjugates, given by 1 / t n , 1 / s n , c n / s n , respectively. As indicated in Example 3, many geometric and algebraic properties of the specific polycenters mentioned above can be found in the Encyclopedia of Triangle Centers (ETC) [2]:
Example 3.
A few trigonometric polycenters in ETC [2].
sin A : : = X 1 csc A : : = X 75 cos A : : = X 63 sec A : : = X 92 tan A : : = X 4 cot A : : = X 69 sin 2 A : : = X 3 csc 2 A : : = X 264 cos 2 A : : = X 1993 sec 2 A : : = X 5392 tan 2 A : : = X 68 cot 2 A : : = X 317 sin 3 A : : = X 6149 csc 3 A : : = X 63759 cos 3 A : : = X 63760 sec 3 A : : = X 63764 tan 3 A : : = X 562 cot 3 A : : = X 63761 sin 4 A : : = X 1147 csc 4 A : : = X 55553 cos 4 A : : = X 63762 sec 4 A : : = X 63765 tan 4 A : : = X 43973 cot 4 A : : = X 55552
Barycentric products and quotients ([16], 99-102), denoted by * and /, of the polycenters listed in Example 3 are also trigonometric polycenters; e.g., X 1 * X 63 = X 3 and X 1 / X 63 = X 4 .
In particular, if f is a trigonometic polycenter, then f n , where n is any positive integer, is also a trigonometric polycenter, as represented by these squares:
Example 4.
Trigonometric square polycenters in ETC [2]. (See also Section 7.)
sin 2 A : : = a 2 : : = X 6 csc 2 A : : = b 2 c 2 : : = X 76 cos 2 A : : = a 2 ( b 2 + c 2 a 2 ) 2 : : = X 394 sec 2 A : : = b 2 c 2 ( b 2 + c 2 a 2 ) 2 : : = X 2052 cos 2 ( B C ) : : = b 2 c 2 ( b 4 + c 4 2 b 2 c 2 a 2 b 2 a 2 c 2 ) 2 : : = X 45793 sin 2 ( B C ) : : = b 2 c 2 ( b 2 c 2 ) 2 : : = X 338 csc 2 ( B C ) : : = a 2 ( b 2 c 2 ) 2 : : = X 249

3. More Trigonometric Polycenters

In this section, we first present polycenters for triangle centers of the forms cos ( n B n C ) : : and sin ( n B n C ) , and follow with a proof-by-computer-code for a recurrence equation for the points cos ( n B n C ) : : as polycenters . Let M = a 2 ( b 2 + c 2 ) ( b 2 c 2 ) 2 . Then
cos ( B C ) : : = p 1 ( a , b , c ) : : , where p 1 ( a , b , c ) = b c M cos ( 2 ( B C ) ) : : = p 2 ( a , b , c ) : : , where p 2 ( a , b , c ) = b 2 c 2 ( ( b 2 c 2 ) 4 + a 4 ( b 4 + c 4 ) + 2 a 2 ( b 6 + b 4 c 2 + b 2 c 4 c 6 ) ) : : cos ( n ( B C ) ) : : = p n ( a , b , c ) : : , where p n ( a , b , c ) = b c M p n 1 ( a , b , c ) a 4 b 4 c 4 p n 2 ( a , b , c ) for n 3 . sin ( B C ) : : = q 1 ( a , b , c ) : : , where q 1 ( a , b , c ) = b c ( b 2 c 2 ) sin ( 2 ( B C ) ) : : = q 2 ( a , b , c ) : : , where q 2 ( a , b , c ) = b 2 c 2 ( b 2 c 2 ) M sin ( n ( B C ) ) : : = q n ( a , b , c ) : : , where q n = b c M q n 1 a 4 b 4 c 4 q n 2 for n 2 .
Instead of a formal proof of the above recurrence equation for p n ( a , b , c ) , we quote the Mathematica code, which is essentially a proof with the added advantage of usefulness for further explorations.
(* Step 1: trig functions in terms of a, b, c & S*)
   trigRules={Cos[A]->(-a^2+b^2+c^2)/(2 b c),
   Cos[B]->(a^2-b^2+c^2)/(2 a c),
   Cos[C]->(a^2+b^2-c^2)/(2 a b),
   Sin[A]->S/(b c),Sin[B]->S/(a c),Sin[C]->S/(a b)};
(* Step 2: double area powers in terms of a, b, c & S*)
   SRules={S->S,S^x_?EvenQ->2^-x ((a+b-c) (a-b+c)
   (-a+b+c) (a+b+c))^(x/2),
   S^x_?OddQ->2^(1-x)((a+b-c)(a-b+c)(-a+b+c)(a+b+c))^(1/2 (-1+x)) S};
(* Step 3: cyclic permutations of a,b,c *)
   cyclic[coord_]:=Apply[coord/. {a->#1,b->#2,c->#3,A->#4,B->#5,C->#6}&,
   Flatten/@NestList[RotateLeft/@#1&,{{a,b,c},{A,B,C}},2],{1}];
(* Step 4: removal of symmetric factors *)
   removeSym:=(Factor[#1/PolynomialGCD@@#1]&)[Factor[#]]&;
(* Step 5: application of Steps 1-4 *)
   polys = Map[(TrigExpand[cyclic[Cos[#(B-C)]]]//.trigRules
   //.SRules//removeSym//removeSym)[[1]]&,Range[7]]
(* Step 6: find signature of 2nd order recurrence *)
   Factor[FindLinearRecurrence[polys]]
The output of the code is the following signature for the recurrence:
b c ( a 2 b 2 b 4 + a 2 c 2 + 2 b 2 c 2 c 4 ) , a 4 b 4 c 4 .
A proof of the recurrence equation, or more precisely, the signature of the recurrence, for sin ( n ( B C ) ) : : as a polycenter is found in much the same way.
As an alternative to representing the family cos ( n B n C ) : : by polynomials, there are relatively simpler representations using quotients of polynomials. We begin with
u = cos ( B C ) = cos B cos C + sin B sin C
= ( b 2 c 2 ) 2 a 2 b 2 a 2 c 2 2 a 2 b c
v = sin ( B C ) = sin B cos C + sin C cos B
= S ( b 2 c 2 ) 2 a 2 b c , where
S = ( 1 / 2 ) ( a + b + c ) ( a + b + c ) ( a b + c ) ( a + b c ) .
Let
f n = f n ( u , v ) = ( 1 / 2 ) ( u i v ) n + ( u + i v ) n = cos ( n B n C ) .
Then by the binomial theorem,
f n = k = 0 n / 2 ( 1 ) k n 2 k u n 2 k v 2 k ,
which satisfies the recurrence
f n = 2 u f n 1 ( u 2 + v 2 ) f n 2 ,
with f 0 = 1 , f 1 = u . Since f n depends only on u and v 2 , it is a rational function; i.e., a radical-free quotient of polynomials. Similary, letting g n = g n ( u , v ) = sin ( n B n C ) / sin ( B C ) , we find that
g n = 2 u g n 1 ( u 2 + v 2 ) g n 2 ,
with g 0 = 0 , g 1 = 1 .
Example 5.
A few more trigonometric polycenters in ETC [2].
sin ( B C ) : : = X 1577 csc ( B C ) : : = X 662 cos ( B C ) : : = X 14213 sec ( B C ) : : = X 2167 tan ( B C ) : : = X 15412 cot ( B C ) : : = X 14570 sin ( 2 B 2 C ) : : = X 18314 csc ( 2 B 2 C ) : : = X 18315 cos ( 2 B 2 C ) : : = X 63763 sec ( 2 B 2 C ) : : = X 63766

4. Half-Angle Trigonometric Polycenters

The next list shows half-angle functions that involve polynomials (viz. they are “radical multiples of polycenters”). Let
P = ( b + c ) 2 a 2 / ( b c ) and Q = a 2 ( b c ) 2 / ( b c ) .
cos ( A / 2 ) : : = p 1 ( a , b , c ) : : , where p 1 ( a , b , c ) = P cos ( 3 A / 2 ) : : = p 3 ( a , b , c ) : : , where p 3 ( a , b , c ) = P ( a 2 b 2 c 2 + b c ) cos ( n A / 2 ) : : = p n ( a , b , c ) : : , where p n ( a , b , c ) = ( a 2 + b 2 + c 2 ) / ( b c ) p n 2 a 4 b 4 c 4 p n 4 : : , for odd n 5 ; sin ( A / 2 ) : : = q 1 ( a , b , c ) : : , where q 1 ( a , b , c ) = Q : : sin ( 3 A / 2 ) : : = q 3 ( a , b , c ) : : , where q 3 ( a , b , c ) = Q ( a 2 b 2 c 2 b c ) : : sin ( n A / 2 ) : : = q n ( a , b , c ) : : , where q n ( a , b , c ) = ( a 2 + b 2 + c 2 ) / ( b c ) q n 2 a 4 b 4 c 4 q n 4 , : : , for odd n 5 .
Next we show Mathematica code for obtaining trigonometric rational functions (quotients of polynomials) for cos ( ( n B n C ) / 2 ) : :  .
lr = FindLinearRecurrence[
   Map[TrigExpand[Cos[# (B - C)/2]] &, Range[1, 11, 2]]];
cyclic[coord_] :=
  Apply[coord /. {a -> #1, b -> #2, c -> #3, A -> #4, B -> #5,
      C -> #6} &, Flatten /@
    NestList[RotateLeft /@ #1 &, {{a, b, c}, {A, B, C}}, 2], {1}];
trigRules =
  Flatten[{Map[
     cyclic, {Cos[A] -> (-a^2 + b^2 + c^2)/(2  b  c),
      Sin[A] -> S/(b  c),
      Cos[A/2] -> 1/2  Sqrt[((-a + b + c)  (a + b + c))/(b  c)],
      Sin[A/2] -> 1/2  Sqrt[((a + b - c)  (a - b + c))/(b  c)],
      Cos[B/2]*Cos[C/2]*Sin[B/2]*
        Sin[C/2] -> ((-a + b + c)  (a + b - c)  (a - b + c)
        (a + b + c))/(16  a^2  b  c)}]}];
Factor[lr /. trigRules]
This code confirms that cos ( ( n B n C ) / 2 ) : : is a rational function with signature
( a 2 b 2 b 4 + a 2 c 2 + 2 b 2 c 2 c 4 ) / ( a 2 b c ) , 1 .
(These rational functions can be transformed into polynomials using a technique developed in Section 6.)
Example 6.
A few half-angle trigonometric polycenters in ETC [2].
cos ( A / 2 ) : : = X 188 sec ( A / 2 ) : : = X 4146 sin ( A / 2 ) : : = X 174 csc ( A / 2 ) : : = X 556 cos ( 3 A / 2 ) : : = X 63779 sin ( 3 A / 2 ) : : = X 63780

5. Sums Involving mB+nC and nB+mC

Proofs of the next two theorems can be obtained by adapting the codes in Section 3 and Section 4.
Theorem 4.
Let f ( m , n ) = f ( m , n , a , b , c ) = sin ( m B + n C ) + sin ( n B + m C ) and let p ( m , n ) = p ( m , n , a , b , c ) be the polycenters given by these recurrences:
p ( m , n ) = a ( a 2 b 2 c 2 ) p ( m 1 , n ) a 2 b 2 c 2 p ( m 2 , n ) ; p ( m , n ) = a ( a 2 b 2 c 2 ) p ( m , n 1 ) a 2 b 2 c 2 p ( m , n 2 ) ,
where p ( 0 , 0 ) = 0 , and p ( 0 , 1 ) = p ( 1 , 0 ) = b + c . Then
p ( m , n , a , b , c ) : : = sin ( m B + n C ) + sin ( n B + m C ) : : .
Example 7.
The appearance of ( m , n , X k ) in the following list signifies that sin ( m B + n C ) + sin ( n B + m C ) : : = X k .
( 0 , 1 , X 10 ) , ( 0 , 2 , X 5 ) , ( 0 , 3 , X 63803 ) , ( 0 , 4 , X 5449 ) ( 1 , 1 , X 1 ) , ( 1 , 2 , X 63802 ) , ( 1 , 3 , X 44707 ) ( 2 , 2 , X 3 ) , ( 2 , 3 , X 63801 ) , ( 2 , 4 , X 1154 ) ( 3 , 3 , X 6149 ) , ( 3 , 5 , X 63801 )
Theorem 5.
Let g ( m , n ) = g ( m , n , a , b , c ) = cos ( m B + n C ) + cos ( n B + m C ) and let q ( m , n ) = q ( m , n , a , b , c ) be the polycenters given by the same recurrences as for p ( m , n ) , where
q ( 0 , 1 ) = q ( 1 , 0 ) = ( b + c ) ( c + a b ) ( a + b c ) q ( 0 , 2 ) = ( b 2 + c 2 a 2 ) ( a 2 ( b 2 + c 2 ) ( b 2 c 2 ) 2 ) .
Then
q ( m , n , a , b , c ) : : = cos ( m B + n C ) + cos ( n B + m C ) : : .
Example 8.
The appearance of ( m , n , X k ) here means that cos ( m B + n C ) + cos ( n B + m C ) : : = X k .
( 0 , 1 , X 226 ) , ( 0 , 2 , X 343 ) , ( 0 , 4 , X 63806 ) ( 1 , 1 , X 63 ) , ( 1 , 2 , X 16577 ) , ( 1 , 3 , X 63808 ) ( 2 , 2 , X 1993 ) , ( 2 , 3 , X 73802 ) ( 3 , 3 , X 63760 ) , ( 3 , 5 , X 63762 )

6. Polycenters j+k cos(nA)::

Here, we find a sequence p n = p n ( a , b , c ) of polycenters satisfying
p n ( a , b , c ) : p n ( b , c , a ) : p n ( c , a , b ) = j + k cos ( n A ) : j + k cos ( n B ) : j + k cos ( n C ) ,
where j and k are nonzero real numbers. The strategy is to determine rational functions u n = u n ( a , b , c ) that can be transformed into the polynomials p n . We begin with the following Mathematica code:
f[a_, b_, c_] := f[a, b, c] = ArcCos[(b^2 + c^2 - a^2)/(2 b  c)];
{a1, b1, c1} = {f[a, b, c], f[b, c, a], f[c, a, b]};
a2[n_] := Collect[Factor[TrigExpand[j + k*Cos[n  a1]]], {j, k}];
b2[n_] := Collect[Factor[TrigExpand[j + k*Cos[n  b1]]], {j, k}];
c2[n_] := Collect[Factor[TrigExpand[j + k*Cos[n  c1]]], {j, k}];
t = Table[a2[n], {n, 0, 10}]; Take[t, 4]
FindLinearRecurrence[t]
t = Table[b2[n], {n, 0, 10}]; Take[t, 4]
FindLinearRecurrence[t]
t = Table[c2[n], {n, 0, 10}]; Take[t, 4]
FindLinearRecurrence[t]
The code gives
u 0 = j + k
u 1 = j + a 2 + b 2 + c 2 2 b c k
u 2 = j + a 4 + b 4 + c 4 2 a 2 b 2 2 a 2 c 2 2 b 2 c 2 k
and recurrence signature ( τ , τ , 1 ) , where
τ = a 2 + b 2 + c 2 + b c b c .
The transformation is simply to multiply, where appropriate, by 2 a n b n c n , obtaining
p 0 = 2 j + 2 k
p 1 = 2 a b c j + a ( b 2 + c 2 a 2 ) k
p 2 = 2 a 2 b 2 c 2 j + a 6 a 4 ( b 2 + c 2 ) + a 2 ( b 4 + c 4 ) k ,
with third-order recurrence signature
( a Q a , a 2 b c Q a , a 3 b 3 c 3 ) ,
where Q a = Q a ( a , b , c ) = a 2 b 2 c 2 b c .
Finally, we apply the substitutions ( a , b , c ) ( b , c , a ) and ( a , b , c ) ( c , a , b ) to (18)-(25) and thereby obtain (17).

7. Applications of the Technique in Section 6

The procedure in Section 6 applies to other families of trigonometric polycenters. Among them are the families cos 2 ( n B n C ) : : and sin 2 ( n B n C ) : : . Both cos 2 ( n B n C ) and sin 2 ( n B n C ) have third-order recurrence with signature ( k ( a , b , c ) , k ( a , b , c ) , 1 ) , where
k = ( b 2 c 2 ) 4 + a 4 ( b 4 + c 4 + b 2 c 2 ) + 2 a 2 ( b 4 c 2 + b 2 c 4 b 6 c 6 ) a 4 b 2 c 2 .
The resulting polycenters are too long for display here. We do observe, however, that for every integer p 2 , the polycenters cos p ( n B n C ) : : and sin p ( n B n C ) : : have recurrence order p + 1 .
Other families to which the procedure applies are represented by
tan n A : : , sec n A : : , csc n A : : , cot n A : : .
Here we consider only the rational-function recurrence for tan n A . The most direct approach appears to be to use the identity
tan n A : : = sin n A cos n B cos n C : : .
The resulting sixth-degree recurrence signature for sin n A cos n B cos n C is more efficiently expressed with Conway notation [15] than with a , b , c :
( k 1 , k 2 , k 3 , k 2 , k 1 , 1 ) ,
where
k 1 = 2 ( 3 S A S B S C + S 2 S ω ) D k 2 = 16 S 6 + 15 S A 2 S B 2 S C 2 + 2 S 2 S A S B S C S ω S 4 S ω 2 D k 3 = 4 ( 8 S 6 + 5 S A 2 S B 2 S C 2 + 2 S 2 S a S B S C S ω + S 4 S ω 2 ) D ,
where D = ( S A S B S C S 2 S ω ) 2 .

8. Infinite Trigonometric Orthopoints

The line at infinity consists of all points X = x : y : z satisfying the linear equation
x + y + z = 0 .
Most of the named points on L are polycenters. Among the simplest are
X 513 = a ( b c ) : : X 514 = b c : : X 30 = cos A - 2 cos B cos C : : = 2 a 4 ( b 2 c 2 ) 2 a 2 ( b 2 + c 2 ) : : ,
these being the points in which the lines X 1 X 75 , X 1 X 2 , X 2 X 3 meet L , respectively. Of special importance is X 30 , as this is the infinite point on the Euler line, X 2 X 3 .
If X = x : y : z is on L , then X can be regarded as a direction in the plane of A B C , since for every point P not on L , every line parallel to the line P X intersects L in X. The line through P orthogonal to P X meets L in a point called the orthopoint (or, in [8], the orthogonal conjugate) of X. We denote the orthopoint of X by X . Barycentrics for X are given by
X = y cos B z cos C : : .
Thus if X is a polycenter represented by a polynomial x ( a , b , c ) as first barycentric, then X is the polycenter
X = x ( b , c , a ) b ( b 2 a 2 c 2 ) x ( c , a , b ) c ( c 2 b 2 a 2 ) : : .
Now for any point X = x : y : z , not necessarily a polycenter and not necessarily on L , the points
y z : z x : x y and 2 x y z : 2 y z x : 2 z x y
are clearly on L , as are their orthopoints,
b ( z x ) ( b 2 a 2 c 2 ) c ( x y ) ( c 2 b 2 a 2 ) : :
and
b ( 2 y z x ) ( b 2 a 2 c 2 ) c ( 2 z x y ) ( c 2 b 2 a 2 ) : : ,
respectively. Moreover, if X is a polycenter, then the orthopoints (29) and (30) are polycenters on L .
Example 9.
Let
X = x : y : z = cos 2 A : : = a 2 ( a 2 b 2 c 2 ) 2 : : = X 394 .
Then
y z : : = cos 2 B cos 2 C : : = X 523 2 x y z : : = 2 cos 2 A cos 2 B cos 2 C : : = X 527 ,
and the two corresponding orthopoints (29) and (30) are respectively
X 30 = 2 a 4 ( b 2 c 2 ) 2 a 2 ( b 2 + c 2 ) : : X 28292 = b c / ( h ( a , b , c ) h ( a , c , b ) ) : : , where h ( a , b , c ) = a 3 + 3 b 3 + c 3 + a 2 ( b c ) 5 b 2 ( a + c ) + c 2 ( b a ) + 2 a b c .
Example 9 typifies infinite polycenters of the forms f ( B ) f ( C ) : : and f ( 2 A ) f ( B ) f ( C ) : : . Such polycenters, for which many algebraic and geometric properties are presented in ETC [2], occupy the lists in the next two examples.
Example 10.
Pairs of trigonometric orthopoints.
cos B cos C : : = X 522 , X 522 = X 515 sin B sin C : : = X 514 , X 514 = X 516 tan B tan C : : = X 525 , X 525 = X 1503 sec B sec C : : = X 521 , X 521 = X 6001 csc B csc C : : = X 513 , X 513 = X 517 cot B cot C : : = X 523 , X 523 = X 30 cos 2 B cos 2 C : : = X 523 , X 523 = X 30 sin 2 B sin 2 C : : = X 523 , X 523 = X 30
Example 10 continued:
tan 2 B tan 2 C : : = X 520 , X 520 = X 6000 sec 2 B sec 2 C : : = X 520 , X 520 = X 6000 csc 2 B csc 2 C : : = X 512 , X 512 = X 511 cot 2 B cot 2 C : : = X 512 , X 512 = X 511 cos 2 B cos 2 C : : = X 523 , X 523 = X 30 sin 2 B sin 2 C : : = X 525 , X 525 = X 1503 sec 2 B sec 2 C : : = X 924 , X 924 = X 13754 cot 2 B cot 2 C : : = X 6368 , X 6368 = X 18400
Example 11.
More pairs of trigonometric orthopoints.
2 cos A cos B cos C : : = X 527 , X 527 = X 28292 2 sin A sin B sin C : : = X 519 , X 527 = X 3667 2 tan A tan B tan C : : = X 30 , X 30 = X 523 2 csc A csc B csc C : : = X 536 , X 536 = X 28475 2 cot A cot B cot C : : = X 524 , X 524 = X 1499 2 cos 2 A cos 2 B cos 2 C : : = X 524 , X 524 = X 1499 2 sin 2 A sin 2 B sin 2 C : : = X 524 , X 524 = X 1499 2 csc 2 A csc 2 B csc 2 C : : = X 538 , X 538 = X 32472 2 cot 2 A cot 2 B cot 2 C : : = X 538 , X 538 = X 32472 2 cos 2 A cos 2 B cos 2 C : : = X 524 , X 524 = X 1499 2 sin 2 A sin 2 B sin 2 C : : = X 30 , X 30 = X 523 2 tan 2 A tan 2 B tan 2 C : : = X 539 , X 539 = X 20184

9. Trigonometric Infinity Bisectors

Let O denote the circumcenter, ( O ) the circumcircle, and L the line at infinity. Suppose that P = p : q : r and U = u : v : w are points on ( O ) and that P , O , U are noncollinear. Let L 1 be the tangent to ( O ) at P and L 2 the tangent to ( O ) at U. Let D = L 1 L 2 and M = O D L . As the line O M bisects the angle between L 1 and L 2 , the point M is called the ( P , U ) -infinity bisector. We denote this point by M ( P , U ) . Its barycentrics are given by
M ( P , U ) = ( a 2 b 2 + c 2 ) ( q u p v ) ( a 2 + b 2 c 2 ) ( r u p w ) 2 a 2 ( r v q w ) : :
If P and U are trigonometric polycenters, then (31) is also a trigonometric polycenter, since
b 2 + c 2 a 2 : c 2 + a 2 b 2 : a 2 + b 2 c 2 = cot A : cot B : cot C .
Note that the M ( P , U ) is the orthopoint of the P U L . A few examples follow:
M ( X 74 , X 477 ) = X 30 = X 523 M ( X 110 , X 476 ) = X 30 = X 523 M ( X 74 , X 476 ) = X 523 = X 30 M ( X 110 , X 477 ) = X 523 = X 30 M ( X 74 , X 98 ) = X 542 = X 690 M ( X 99 , X 110 ) = X 542 = X 690 M ( X 74 , X 99 ) = X 690 = X 542 M ( X 98 , X 110 ) = X 690 = X 542 M ( X 74 , X 110 ) = X 526 = X 5663 M ( X 98 , X 99 ) = X 804 = X 2782

10. Trigonometric Polylines

Among the many central lines [9] of interest in triangle geometry are the trigonometic polylines n-Euler line and n-Nagel line. The Euler line itself is given by the following barycentric equations:
0 = ( tan B tan C ) x + ( tan C tan A ) y + ( tan A tan B ) z
= ( sin 2 B sin 2 C ) x + ( sin 2 C sin 2 A ) y + ( sin 2 A sin 2 B ) z
= cos A sin ( B C ) x + cos B sin ( C A ) y + cos C sin ( A B ) z = ( b 2 c 2 ) ( b 2 + c 2 a 2 ) x + ( c 2 a 2 ) ( c 2 + a 2 b 2 ) y + ( a 2 b 2 ) ( a 2 + b 2 c 2 ) z
The n-Euler line is defined by substituting n A , n B , n C for A , B , C , respectively, in (32), (), or (). The n-Euler line passes through the following n-polycenters, which, for n = 1 are indexed in ETC [2] as X 2 , X 3 , X 4 , X 5 , respectively:
n - centroid = c 0 = 1 : 1 : 1 n - circumcenter = cos n A : : n - orthocenter = tan n A : : n - nine - point center = sin n A cos ( n B n C ) : : .
These points appear in a little-known paper [7] in a discussion of “layers” in triangle geometry—without mention of the fact that the n-points and n-lines have polynomial representations.
The Nagel line is given by the equations
0 = ( sin B sin C ) x + ( sin C sin A ) y + ( sin A sin B ) z . = ( b c ) x + ( c a ) y + ( a b ) z ,
and the n-Nagel line by
0 = ( sin n B sin n C ) x + ( sin n C sin n A ) y + ( sin n A sin n B ) z .
The Nagel line passes through the incenter, X 1 = sin A : sin B : sin C and the centroid, X 2 = 1 : 1 : 1 , so that the n-Nagel line passes through the centroid and the point sin n A : sin n B : sin n C . Thus, for every n, the n-Euler line and n-Nagel line meet in the centroid. Moreover, by () and (36), the 2 n -Nagel line and n-Euler line are identical for every positive integer n. Among the notable trigonometric polycenters on the 2-Euler line, alias 4-Nagel line, are the following:
X 2 = 1 : 1 : 1 X 54 = Kosnita point = sin A sec ( B C ) : : = isogonal conjugate of the nine - point center , X 5 X 68 = Prasolov point = tan 2 A : : X 1147 = sin 4 A : : X 5449 = 2 nd Hatzipolakis - Moses point = sin 4 B + sin 4 C : : = midpoint of X 68 and X 1147 X 6193 = tan B + tan C tan A : : X 16032 = csc A sec ( B C ) : :
Each of these points, and others on the 2-Euler line, has a list of properties in ETC [2], involving many other trigonometric polycenters and their interrelationships.

11. Concluding Remarks

The notion of trigonometric polycenter extends to various subjects, other than those mentioned above. Several examples follow:
  • Triangle centers whose barycentrics depend on angles of the form
    n A + r π , n B + r π , n C + r π
    for some nonzero number r, such as the Fermat point,
    X 13 = sin A csc ( A + π / 3 ) : sin B csc ( B + π / 3 ) : sin C csc ( C + π / 3 ) = a 4 2 ( b 2 c 2 ) 2 + a 2 ( b 2 + c 2 + Ψ ) : : ,
    where Ψ = 4 3 × (area of triangle A B C ), and related points X i for i = 14 , , 18 in ETC [2].
  • Bicentric pairs [1] of points, such as the Brocard points,
    1 / b 2 : 1 / c 2 : 1 / a 2 = sin 2 C sin 2 A : sin 2 A sin 2 B : sin 2 B sin 2 C 1 / c 2 : 1 / a 2 : 1 / b 2 = sin 2 B sin 2 A : sin 2 C sin 2 B : sin 2 A sin 2 C ,
    leading to Brocard n-points by substituting n A , n B , N C for A , B , C , respectively.
  • Cubic curves such as those indexed and elegantly described by Bernard Gibert [3]. Here we sample just one of more than one thousand: K007, the Lucas cubic, consisting of all points x : y : z that satisfy
    ( b 2 + c 2 a 2 ) x ( y 2 z 2 ) + ( c 2 + a 2 b 2 ) y ( z 2 x 2 ) + ( a 2 + b 2 c 2 ) z ( x 2 y 2 ) = 0 .
    For every n, the symbolic substitution
    ( a cos n A , b cos n B , c cos n C )
    transforms this “polynomial cubic” into a “trigonometric cubic”, and likewise for the substitution
    ( a sin n A , b sin n B , c sin n C ) ,
    etc. For details regarding symbolic substitutions see [6].
  • Triangle centers that result from unary operations on trigonometric polycenters, such as
    ( y z ) / x : ( z x ) / y : ( x y ) / z ,
    where x : y : z is a trigonometric polycenter. See [10].
  • For specific numbers a , b , c , such as ( a , b , c ) = ( 2 , 3 , 4 ) , representing the smallest integer-sided isosceles triangle, we have integer sequences such as given by
    a n = 2 2 n + 1 cos n A ,
    where A, as usual, is the angle opposite side B C in a triangle A B C having sidelengths | B C | = a , | C A | = b , | A B | = c . Such sequences have interesting divisibility properties, such as the fact that if p is a prime that divides a term, then the indices n such that p divides n comprise an arithmetic sequence. For this sequence and access to related sequences, see A375880.
  • A final comment may be loosely summarized by the observation that, throughout this paper, the role of homogeneous coordinates can be taken by trilinear coordinates [4], but with different results. For example, in trilinear coordinates, we have
    X 2 = a : b : c = sin A : sin B : sin C X 3 = a ( b 2 + c 2 a 2 ) : : = cos A : cos B cos C : : ,
    which lead to trigonometric polycenters by substituting n A , n B , n C for A , B , C . The resulting trilinear representations are equivalent to the barycentric representations sin A sin n A : : and sin A cos n A : : , these being trigonometric polycenters not previously mentioned in this article.

References

  1. Bicentric Pairs of Points. Available online: https://faculty.evansville.edu/ck6/encyclopedia/BicentricPairs.html.
  2. Encyclopedia of Triangle Centers. Available online: https://faculty.evansville.edu/ck6/encyclopedia/etc.html.
  3. Bernard Gibert, Cubics in the Triangle Plane. Available online: http://bernard-gibert.fr/.
  4. Clark Kimberling, “Triangle Centers and Central Triangles”, jCongressus Numerantium 129 (1998) i-xxv, 1-295.
  5. Clark Kimberling, “Polynomial Points in the Plane of a Triangle”, in Polynomials—Exploring Fundamental Mathematical Expressions, Intech Open, forthcoming.
  6. Clark Kimberling, “Symbolic substitutions in the transfigured plane of a triangle,” Aequationes Mathematicae 73 (2007) 156-171.
  7. Clark Kimberling and Cyril Parry, “Products, square roots, and layers in triangle geometry”, Mathematics and Informatics Quarterly 10 (2000) 9-22.
  8. Clark Kimberling and Peter J. C. Moses, “Line conjugates in the plane of a triangle”, Aequationes Mathematicae 97 (2023) 161-184.
  9. Peter J. C. Moses, “Central Lines”. Available online: https://faculty.evansville.edu/ck6/encyclopedia/CentralLines.html.
  10. Peter J. C. Moses and Clark Kimberling, “Unary Operations on Homogeneous Coordinates in the Plane of a Triangle”, Geometry 1 (2024) 3-15. Available online: https://www.mdpi.com/3042-402X/1/1/2.
  11. Online Encyclopedia of Integer Sequences. Available online: https://oeis.org.
  12. R. O. Rayes, V. Trevisan, and P. S. Wang, “Factorization properties of Chebyshev Polynomials”, Computers & Mathematics with Applications 50 (2005) 1231-1240. Available online: https://www.sciencedirect.com/science/article/pii/S0898122105003767.
  13. Theodore J. Rivlin, The Chebyshev Polynomials, Wiley, New York, 1974.
  14. Eric W. Weisstein, “Triangle Center”, MathWorld. Available online: https://mathworld.wolfram.com/TriangleCenter.html.
  15. Eric W. Weisstein, “Conway Triangle Notation”, MathWorld. Available online: https://mathworld.wolfram.com/ConwayTriangleNotation.html.
  16. Paul Yiu, Introduction to the Geometry of the Triangle, 2001, 2013. Available online: https://web.archive.org/web/20180422091419id_/http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

32

Views

17

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated