Submitted:
21 November 2024
Posted:
22 November 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Z.; Ren, J.; Bai, H.; He, P.; Hao, L.; Liu, N.; Chen, B.; Niu, R.; Gong, J. Shape-Controlled Fabrication of MnO/C Hybrid Nanoparticle from Waste Polyester for Solar Evaporation and Thermoelectricity Generation. Chem. Eng. J. 2023, 451, 138534. [Google Scholar] [CrossRef]
- Gui, J.; Li, C.; Cao, Y.; Liu, Z.; Shen, Y.; Huang, W.; Tian, X. Hybrid Solar Evaporation System for Water and Electricity Co-Generation: Comprehensive Utilization of Solar and Water Energy. Nano Energy 2023, 107, 108155. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, A.; Ai, X.; Liao, J.; Song, Q.; Reith, H.; Cao, X.; Fang, Y.; Schierning, G.; Nielsch, K.; Bai, S.; Chen, L. Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion. Adv. Energy Mater. 2021, 11, 2101213. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, 1369. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, D.; Hu, L.; Muto, A.; Chen, X.; Chen, G.; Chiesa, M. Photovoltaic-Thermoelectric Hybrid Systems: A General Optimization Methodology. Appl. Phys. Lett. 2008, 92, 243503. [Google Scholar] [CrossRef]
- Huang, Q.; Ye, X.; Chen, W.; Song, X.; Chen, Y.; Wen, X.; Zhang, M.; Wang, Y.; Chen, S.L.; Dang, L.; Li. M.D. Boosting Photo-thermo-electric Conversion via a Donor−Acceptor Organic Cocrystal Strategy. ACS Energy Lett. 2023, 8, 4179–4185.
- Ren, J.; Ding, Y.; Gong, J.; Qu, J.; Niu, R. Simultaneous Solar-driven Steam and Electricity Generation by Cost-effective, Easy Scale-up MnO2-based Flexible Membranes. Energy Environ. Mater. 2023, 6, e12376. [Google Scholar] [CrossRef]
- Fan, Z.; Ren, J.; Bai, H.; He, P.; Hao, L.; Liu, N.; Chen, B.; Niu, R.; Gong. J. Shape-controlled fabrication of MnO/C hybrid nanoparticle from waste polyester for solar evaporation and thermoelectricity generation. Chem. Eng. J. 2023, 451, 138534. Chem. Eng. J.
- Li, N.; Yang, D. J.; Shao, Y.; Liu, Y.; Tang, J.; Yang, L.; Sun, T.; Zhou, W.; Liu, H.; Xue, G. Nanostructured Black Aluminum Prepared by Laser Direct Writing as a High-Performance Plasmonic Absorber for Photothermal/Electric Conversion. ACS Appl. Mater. Interfaces 2021, 13, 4305–4315. [Google Scholar] [CrossRef]
- Duan, Y.; Weng, M.; Zhang, W.; Qian, Y.; Luo, Z.; Chen, L. Multi-functional carbon nanotube paper for solar water evaporation combined with electricity generation and storage. Engeg. Convers Manage. 2021, 241, 114306. [Google Scholar] [CrossRef]
- Ghaffar, A.; Imran, Q.; Hassan, M.; Usman, M.; Khan, M. U. Simultaneous solar water desalination and energy generation by high efficient graphene oxide-melanin photothermal membrane. J. Environ. Chem. Eng. 2022, 10, 108424. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Long, Y.; Xu, Y.; Yang, J.; Zhu, H.; Liu, T.; Shi, G. High-Efficiency Photo-Thermo-Electric System with Waste Heat Utilization and Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 40437–40446. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, T.; Feng, Y.F.; Shi, J.; Zhou, B.; Zhu, C.; Wang, Y.; Liang, R.; Mizuno, M. Poly(N-phenylglycine)/MoS2 Nanohybrid with Synergistic SolarThermal Conversion for Efficient Water Purification and Thermoelectric Power Generation. ACS Appl. Mater. Interfaces 2022, 14, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, J.; Li, Z.; Ji, M.; Zhao, M.; Shen, M.; Han, X.; Jia, T.; Li, C.; Wang, Y. Donor–Acceptor-Type Organic-Small-Molecule-Based Solar-Energy-Absorbing Material for Highly Efcient Water Evaporation and Thermoelectric Power Generation. Adv. Funct. Mater. 2021, 2106247. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, N.N.; Si, J.W.; Li, Z.Y.; Krautscheid, H. Bidirectional π − π stacking for near-infrared photothermal effects and photo-thermo-electric conversion in a semiconductive hydroxamate coordination polymer. Chem. Eng. J. 2024, 491, 152054. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Z.Y.; Zhang, N.N.; Krautscheid, H. A π−π stacked porous framework for highly efficient second near-infrared photothermal effects and photo-thermo-electric conversion. Chem. Eng. J. 2024, 499, 156059. [Google Scholar] [CrossRef]
- Weng, X. L.; Liu, J.Y. Strategies for maximizing photothermal conversion efficiency based on organic dyes, Drug Discov. Today 2021, 26, 2045−2052.
- Tang, B.; Li, W. L.; Chang, Y.; Yuan, B.; Wu, Y.; Zhang, M. T.; Xu, J. F.; Li, J.; Zhang, X. A Supramolecular Radical Dimer: High-Efficiency NIR-II Photothermal Conversion and Therapy, Angew. Chem. Int. Ed. 2019, 58, 15526–15531. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kang, M.; Zhang, Z.; Li, X.; Xu, W.; Wang, D.; Gao, X.; Tang, B.Z. Synchronously Manipulating Absorption and Extinction Coefficient of Semiconducting Polymers via Precise Dual-Acceptor Engineering for NIR-II Excited Photothermal Theranostics. Angew. Chem. Int. Ed. 2023, 62, e202301617. [Google Scholar] [CrossRef]
- Liao, J.Z.; Zhu, Z.C.; Liu, S.T.; Ke, H. Photothermal Conversion Perylene-Based Metal–Organic Framework with Panchromatic Absorption Bandwidth across the Visible to Near-Infrared, Inorg. Chem. 2024, 63, 3327–3334. [Google Scholar]
- Pan, H.; Li, S.; Kan, J. L.; Gong, L.; Lin, C.; Liu, W.; Qi, D.; Wang, K.; Yan, X.; Jiang, J. A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation, Chem. Sci., 2019, 10, 8246–8252. [Google Scholar]
- Wang, S.; Li, S.; Xiong, J.; Lin, Z.; Wei, W.; Xu, Y. Near-infrared photothermal conversion of stable radicals photoinduced from a viologen-based coordination polymer. Chem. Commun. 2020, 56, 7399–7402. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, B.; Liu, Y.; Hu, D.; Sheng, Z.; Zhang, X.; Yuan, Z. Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics. Theranostics 2019, 9, 5315–5331. [Google Scholar] [CrossRef]
- Chen, Y.T.; Zhuo, M.-P.; Wen, X.; Chen, W.; Zhang, K.Q.; Li, M.-D. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. Adv. Sci. 2023, 10, 2206830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, S.; Bao, A.; Chen, Y.; Liang, H.; Ji, S.; Chen, J.; Ye, B.; Yang, Q.; Liu, Y.; Li, J.; Chen, W.; Huang, X.; Ni, S.; Dang, Li.; Li, M.-D. ; Anion-Counterion Strategy toward Organic Cocrystal Engineering for Near-Infrared Photothermal Conversion and Solar-Driven Water Evaporation. Angew. Chem. Int. Ed. 2024, e202318628. [Google Scholar]
- Chen, K.K.; Qin, C.C.; Ding, M.J.; Guo, S.; Lu, T.-B.; Zhang. Z.-M. Broadband and strong visible-light-absorbing cuprous sensitizers for boosting photosynthesis. Proc. Natl. Acad. Sci. USA 2022, 119, e2213479119.
- Lazorski, Megan, S.; Castellano, Felix N. Advances in the light conversion properties of Cu(I)-based photosensitizers. Polyhedron 2014, 82, 57–70.
- Scaltrito, D. V.; Thompson, D. W.; O’Callaghan, J. A.; Meyer. G. J. MLCT excited states of cuprous bis-phenanthroline coordination compounds. Coord. Chem. Rev. 2000, 208243–266.
- Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Honda, A.; Kitagawa, S. Building a Two-dimensional Co-ordination Polymer having a Multilayered Arrangement. A Molecular Assembly comprising Hanging Phenazine Molecules between Polymeric Stair Frameworks of Copper(I) Halides. J. Chem. Soc., Dalton Trans. 1994, 2771–2775.
- Zhang, N.N.; Liu, Y.T.; Li, L.; Liu, X.T.; Xu, K.; Li, Z.Y.; Yan, Y. Highly efficient NIR-II photothermal conversion from a 2,2’-biquinoline-4,4’-dicarboxylate based photochromic complex, Inorg. Chem. Front., 2024, 11, 4867–4875. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
