Submitted:
21 November 2024
Posted:
22 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Gram-Positive Pathogens That Hijack the Caveolin-Mediated Endocytosis for Cellular Entry, Survival and Immune Evasion
2.1. Listeria monocytogenes
2.2. Mycobacterium tuberculosis
2.3. Staphylococcus aureus
2.4. Streptococcus species
3. Gram-Negative Bacterial Pathogens Manipulate Caveolin-Mediated Endocytosis to Infiltrate Host Cells, Secure a Niche for Survival and Evade the Immune System
3.1. Brucella spp.
3.2. Campylobacter jejuni
3.3. Chlamydia trachomatis
3.4. Edwardsiella tarda
3.5. Ehrlichia caffeensis and Anaplasma phagocytophilum
3.6. Escherichia coli
3.7. Francisella tularensis
3.8. Klebsiella pneumonia
3.9. Leptospira
3.10. Neisseria gonorrhea
3.11. Porphyromonas gingivalis
3.12. Pseudomonas aeruginosa
3.13. Rickettsia spp.
3.14. Salmonella enterica Serovar typhimurium
3.15. Shigella flexneri
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Yamada , E. The fine structure of the gall bladder epithelium of the mouse. The Journal of Biophysical and Biochemical Cytology 1955, 1, 445-458. [CrossRef]
- Fra, A.M.; Williamson, E.; Simons, K.; Parton, R.G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proceedings of the National Academy of Sciences 1995, 92, 8655-8659.
- Drab, M.; Verkade, P.; Elger, M.; Kasper, M.; Lohn, M.; Lauterbach, B.; Menne, J.; Lindschau, C.; Mende, F.; Luft, F.C. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001, 293, 2449-2452.
- Razani, B.; Engelman, J.A.; Wang, X.B.; Schubert, W.; Zhang, X.L.; Marks, C.B.; Macaluso, F.; Russell, R.G.; Li, M.; Pestell, R.G. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. Journal of Biological Chemistry 2001, 276, 38121-38138.
- Glenney, J.R. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. Journal of Biological Chemistry 1989, 264, 20163-20166.
- Glenney Jr, J.R.; Zokas, L. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. The Journal of cell biology 1989, 108, 2401-2408.
- Bastiani, M.; Parton, R.G. Caveolae at a glance. Journal of cell science 2010, 123, 3831-3836.
- Parton, R.G. Caveolae: structure, function, and relationship to disease. Annual review of cell and developmental biology 2018, 34, 111-136.
- Scherer, P.E.; Okamoto, T.; Chun, M.; Nishimoto, I.; Lodish, H.F.; Lisanti, M.P. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proceedings of the National Academy of Sciences 1996, 93, 131-135.
- Song, K.S.; Scherer, P.E.; Tang, Z.; Okamoto, T.; Li, S.; Chafel, M.; Chu, C.; Kohtz, D.S.; Lisanti, M.P. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells: caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. Journal of Biological Chemistry 1996, 271, 15160-15165.
- Porta, J.C.; Han, B.; Gulsevin, A.; Chung, J.M.; Peskova, Y.; Connolly, S.; Mchaourab, H.S.; Meiler, J.; Karakas, E.; Kenworthy, A.K. Molecular architecture of the human caveolin-1 complex. Science advances 2022, 8, eabn7232.
- Morén, B.; Shah, C.; Howes, M.T.; Schieber, N.L.; McMahon, H.T.; Parton, R.G.; Daumke, O.; Lundmark, R. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular biology of the cell 2012, 23, 1316-1329.
- Ariotti, N.; Hall, T.E.; Rae, J.; Ferguson, C.; McMahon, K.-A.; Martel, N.; Webb, R.E.; Webb, R.I.; Teasdale, R.D.; Parton, R.G. Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Developmental cell 2015, 35, 513-525.
- Yeow, I.; Howard, G.; Chadwick, J.; Mendoza-Topaz, C.; Hansen, C.G.; Nichols, B.J.; Shvets, E. EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Current Biology 2017, 27, 2951-2962. e2955.
- Kovtun, O.; Tillu, V.A.; Ariotti, N.; Parton, R.G.; Collins, B.M. Cavin family proteins and the assembly of caveolae. Journal of cell science 2015, 128, 1269-1278.
- Kovtun, O.; Tillu, V.A.; Jung, W.; Leneva, N.; Ariotti, N.; Chaudhary, N.; Mandyam, R.A.; Ferguson, C.; Morgan, G.P.; Johnston, W.A. Structural insights into the organization of the cavin membrane coat complex. Developmental cell 2014, 31, 405-419.
- Hill, M.M.; Bastiani, M.; Luetterforst, R.; Kirkham, M.; Kirkham, A.; Nixon, S.J.; Walser, P.; Abankwa, D.; Oorschot, V.M.; Martin, S. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008, 132, 113-124.
- Monier, S.; Parton, R.G.; Vogel, F.; Behlke, J.; Henske, A.; Kurzchalia, T.V. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular biology of the cell 1995, 6, 911-927.
- Bastiani, M.; Liu, L.; Hill, M.M.; Jedrychowski, M.P.; Nixon, S.J.; Lo, H.P.; Abankwa, D.; Luetterforst, R.; Fernandez-Rojo, M.; Breen, M.R. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. Journal of Cell Biology 2009, 185, 1259-1273.
- Lajoie, P.; Goetz, J.G.; Dennis, J.W.; Nabi, I.R. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. Journal of Cell Biology 2009, 185, 381-385.
- Hayer, A.; Stoeber, M.; Bissig, C.; Helenius, A. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 2010, 11, 361-382.
- Lin, A.E.-J.; Guttman, J.A. Hijacking the endocytic machinery by microbial pathogens. Protoplasma 2010, 244, 75-90.
- Cheng, Z.-J.; Deep Singh, R.; Marks, D.L.; Pagano, R.E. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Molecular membrane biology 2006, 23, 101-110.
- Shin, J.-S.; Abraham, S.N. Caveolae as portals of entry for microbes. Microbes and infection 2001, 3, 755-761.
- Zaas, D.W.; Duncan, M.J.; Li, G.; Wright, J.R.; Abraham, S.N. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. Journal of Biological Chemistry 2005, 280, 4864-4872.
- Feng, H.; Guo, W.; Han, J.; Li, X.-A. Role of caveolin-1 and caveolae signaling in endotoxemia and sepsis. Life sciences 2013, 93, 1-6.
- Duncan, M.J.; Shin, J.S.; Abraham, S.N. Microbial entry through caveolae: variations on a theme. Cellular microbiology 2002, 4, 783-791.
- Shin, J.S.; Abraham, S. Co-option of endocytic functions of cellular caveolae by pathogens. Immunology 2001, 102, 2-7.
- Zaas, D.W.; Swan, Z.; Brown, B.J.; Wright, J.R.; Abraham, S.N. The expanding roles of caveolin proteins in microbial pathogenesis. Communicative & integrative biology 2009, 2, 535-537.
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—major pathogens. Emerging infectious diseases 2011, 17, 7.
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nature Reviews Microbiology 2018, 16, 32-46.
- Eallonardo, S.J.; Freitag, N.E. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2023, 13, 88.
- Drolia, R.; Bhunia, A.K. Crossing the intestinal barrier via Listeria adhesion protein and internalin A. Trends in microbiology 2019, 27, 408-425.
- Lecuit, M.; Vandormael-Pournin, S.; Lefort, J.; Huerre, M.; Gounon, P.; Dupuy, C.; Babinet, C.; Cossart, P. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 2001, 292, 1722-1725.
- Drolia, R.; Tenguria, S.; Durkes, A.C.; Turner, J.R.; Bhunia, A.K. Listeria adhesion protein induces intestinal epithelial barrier dysfunction for bacterial translocation. Cell host & microbe 2018, 23, 470-484. e477.
- Chiba, S.; Nagai, T.; Hayashi, T.; Baba, Y.; Nagai, S.; Koyasu, S. Listerial invasion protein internalin B promotes entry into ileal Peyer's patches in vivo. Microbiology and immunology 2011, 55, 123-129.
- Portnoy, D.A.; Jacks, P.S.; Hinrichs, D. Role of hemolysin for the intracellular growth of Listeria monocytogenes. The Journal of experimental medicine 1988, 167, 1459-1471.
- Kocks, C.; Gouin, E.; Tabouret, M.; Berche, P.; Ohayon, H.; Cossart, P. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 1992, 68, 521-531.
- Tijoriwalla, S.; Liyanage, T.; Herath, T.U.; Lee, N.; Rehman, A.; Gianfelice, A.; Ireton, K. The host GTPase Dynamin 2 modulates apical junction structure to control cell-to-cell spread of Listeria monocytogenes. Infection and immunity 2024, 92, e00136-00124.
- Rajabian, T.; Gavicherla, B.; Heisig, M.; Müller-Altrock, S.; Goebel, W.; Gray-Owen, S.D.; Ireton, K. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nature cell biology 2009, 11, 1212-1218.
- Drolia, R.; Amalaradjou, M.A.R.; Ryan, V.; Tenguria, S.; Liu, D.; Bai, X.; Xu, L.; Singh, A.K.; Cox, A.D.; Bernal-Crespo, V. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nature communications 2020, 11, 6344.
- Liu, D.; Bai, X.; Helmick, H.D.; Samaddar, M.; Amalaradjou, M.A.R.; Li, X.; Tenguria, S.; Gallina, N.L.; Xu, L.; Drolia, R. Cell-surface anchoring of Listeria adhesion protein on L. monocytogenes is fastened by internalin B for pathogenesis. Cell Reports 2023, 42.
- Drolia, R.; Bryant, D.B.; Tenguria, S.; Jules-Culver, Z.A.; Thind, J.; Amelunke, B.; Liu, D.; Gallina, N.L.; Mishra, K.K.; Samaddar, M. Listeria adhesion protein orchestrates caveolae-mediated apical junctional remodeling of epithelial barrier for Listeria monocytogenes translocation. Mbio 2024, 15, e02821-02823.
- Veiga, E.; Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature cell biology 2005, 7, 894-900.
- Seveau, S.; Bierne, H.; Giroux, S.; Prévost, M.-C.; Cossart, P. Role of lipid rafts in E-cadherin–and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells. The Journal of cell biology 2004, 166, 743-753.
- Seveau, S.; Tham, T.N.; Payrastre, B.; Hoppe, A.D.; Swanson, J.A.; Cossart, P. A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cellular microbiology 2007, 9, 790-803.
- Tsai, Y.-H.; Chen, W.-L. Host lipid rafts as the gates for Listeria monocytogenes infection: A Mini-Review. Frontiers in Immunology 2020, 11, 1666.
- Dhanda, A.S.; Vogl, A.W.; Ness, F.; Innocenti, M.; Guttman, J.A. mDia1 assembles a linear F-actin coat at membrane invaginations to drive Listeria monocytogenes cell-to-cell spreading. Mbio 2021, 12, e02939-02921.
- Dhanda, A.S.; Yu, C.; Lulic, K.T.; Vogl, A.W.; Rausch, V.; Yang, D.; Nichols, B.J.; Kim, S.H.; Polo, S.; Hansen, C.G. Listeria monocytogenes exploits host caveolin for cell-to-cell spreading. Mbio 2020, 11, 10.1128/mbio. 02857-02819.
- Muñoz, S.; Rivas-Santiago, B.; Enciso, J. Mycobacterium tuberculosis entry into mast cells through cholesterol-rich membrane microdomains. Scandinavian journal of immunology 2009, 70, 256-263.
- Kotzé, L.A.; Young, C.; Leukes, V.N.; John, V.; Fang, Z.; Walzl, G.; Lutz, M.B.; du Plessis, N. Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts. EBioMedicine 2020, 53.
- Wu, Y.; Riehle, A.; Pollmeier, B.; Kadow, S.; Schumacher, F.; Drab, M.; Kleuser, B.; Gulbins, E.; Grassmé, H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis 2024, 147, 102493.
- Goldmann, O.; Lang, J.C.; Rohde, M.; May, T.; Molinari, G.; Medina, E. Alpha-hemolysin promotes internalization of Staphylococcus aureus into human lung epithelial cells via caveolin-1-and cholesterol-rich lipid rafts. Cellular and Molecular Life Sciences 2024, 81, 435.
- Rohde, M.; Müller, E.; Chhatwal, G.S.; Talay, S.R. Host cell caveolae act as an entry-port for group A streptococci. Cellular microbiology 2003, 5, 323-342.
- Jiang, Q.; Zhou, X.; Cheng, L.; Li, M. The adhesion and invasion mechanisms of Streptococci. Current Issues in Molecular Biology 2019, 32, 521-560.
- Toh, H.; Lin, C.-Y.; Nakajima, S.; Aikawa, C.; Nozawa, T.; Nakagawa, I. Group A Streptococcus NAD-glycohydrolase inhibits caveolin 1-mediated internalization into human epithelial cells. Frontiers in Cellular and Infection Microbiology 2019, 9, 398.
- De Gaetano, G.V.; Lentini, G.; Coppolino, F.; Famà, A.; Pietrocola, G.; Beninati, C. Engagement of α3β1 and α2β1 integrins by hypervirulent Streptococcus agalactiae in invasion of polarized enterocytes. Frontiers in Microbiology 2024, 15, 1367898.
- Ferreira, B.J.; Lannes-Costa, P.S.; Santos, G.d.S.; Mermelstein, C.; Einicker-Lamas, M.; Nagao, P.E. Involvement of lipid microdomains in human endothelial cells infected by Streptococcus agalactiae type III belonging to the hypervirulent ST-17. Memórias do Instituto Oswaldo Cruz 2020, 115, e190398.
- Asmat, T.M.; Agarwal, V.; Saleh, M.; Hammerschmidt, S. Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. International Journal of Medical Microbiology 2014, 304, 1233-1246.
- Naroeni, A.; Porte, F. Role of cholesterol and the ganglioside GM1 in entry and short-term survival of Brucella suis in murine macrophages. Infection and immunity 2002, 70, 1640-1644.
- Watarai, M.; Makino, S.i.; Fujii, Y.; Okamoto, K.; Shirahata, T. Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cellular microbiology 2002, 4, 341-355.
- Lee, J.J.; Kim, D.G.; Kim, D.H.; Simborio, H.L.; Min, W.; Lee, H.J.; Her, M.; Jung, S.C.; Watarai, M.; Kim, S. Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus within HeLa cells. Journal of Biological Chemistry 2013, 288, 28049-28057.
- Hu, L.; McDaniel, J.P.; Kopecko, D.J. Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni 81-176. Microbial pathogenesis 2006, 40, 91-100.
- Watson, R.O.; Galán, J.E. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS pathogens 2008, 4, e14.
- Stelzner, K.; Vollmuth, N.; Rudel, T. Intracellular lifestyle of Chlamydia trachomatis and host–pathogen interactions. Nature Reviews Microbiology 2023, 21, 448-462.
- Norkin, L.C.; Wolfrom, S.A.; Stuart, E.S. Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection. Experimental cell research 2001, 266, 229-238.
- Webley, W.C.; Norkin, L.C.; Stuart, E.S. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. BMC infectious diseases 2004, 4, 1-12.
- Hybiske, K.; Stephens, R.S. Mechanisms of Chlamydia trachomatis entry into nonphagocytic cells. Infection and immunity 2007, 75, 3925-3934.
- Sui, Z.-h.; Xu, H.; Wang, H.; Jiang, S.; Chi, H.; Sun, L. Intracellular trafficking pathways of Edwardsiella tarda: from clathrin-and caveolin-mediated endocytosis to endosome and lysosome. Frontiers in cellular and infection microbiology 2017, 7, 400.
- Hu, T.; Zhang, L.; Wang, W.; Yang, D.; Xiao, J.; Zhang, Y.; Liu, X.; Liu, Q. Edwardsiella piscicida enters nonphagocytic cells via a macropinocytosis-involved hybrid mechanism. Journal of Bacteriology 2019, 201, 10.1128/jb. 00548-00518.
- Rikihisa, Y. Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nature Reviews Microbiology 2010, 8, 328-339.
- Lin, M.; Rikihisa, Y. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cellular microbiology 2003, 5, 809-820.
- Lind, M.C.H.; Naimi, W.A.; Chiarelli, T.J.; Sparrer, T.; Ghosh, M.; Shapiro, L.; Carlyon, J.A. Anaplasma phagocytophilum invasin AipA interacts with CD13 to elicit Src kinase signaling that promotes infection. Mbio 2024, 15, e01561-01524.
- Vila, J.; Sáez-López, E.; Johnson, J.R.; Römling, U.; Dobrindt, U.; Cantón, R.; Giske, C.; Naas, T.; Carattoli, A.; Martínez-Medina, M. Escherichia coli: an old friend with new tidings. FEMS microbiology reviews 2016, 40, 437-463.
- Eto, D.S.; Gordon, H.B.; Dhakal, B.K.; Jones, T.A.; Mulvey, M.A. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cellular microbiology 2008, 10, 2553-2567.
- Shin, J.-S.; Gao, Z.; Abraham, S.N. Involvement of cellular caveolae in bacterial entry into mast cells. Science 2000, 289, 785-788.
- Sukumaran, S.K.; Quon, M.J.; Prasadarao, N.V. Escherichia coli K1 internalization via caveolae requires caveolin-1 and protein kinase Cα interaction in human brain microvascular endothelial cells. Journal of Biological Chemistry 2002, 277, 50716-50724.
- Chi, F.; Jong, T.D.; Wang, L.; Ouyang, Y.; Wu, C.; Li, W.; Huang, S.H. Vimentin-mediated signalling is required for IbeA+ E. coli K1 invasion of human brain microvascular endothelial cells. Biochem J 2010, 427, 79-90. [CrossRef]
- Huang, S.-H.; Chi, F.; Peng, L.; Bo, T.; Zhang, B.; Liu, L.-Q.; Wu, X.; Mor-Vaknin, N.; Markovitz, D.M.; Cao, H. Vimentin, a novel NF-κB regulator, is required for meningitic Escherichia coli K1-induced pathogen invasion and PMN transmigration across the blood-brain barrier. PLoS One 2016, 11, e0162641.
- Li, Y.; Zhao, Y.; Xu, X.; Zhang, R.; Zhang, J.; Zhang, X.; Li, Y.; Deng, S.; Lian, Z. Overexpression of Toll-like receptor 4 contributes to the internalization and elimination of Escherichia coli in sheep by enhancing caveolae-dependent endocytosis. Journal of Animal Science and Biotechnology 2021, 12, 1-16.
- Law, H.; Lin, A.E.-J.; Kim, Y.; Quach, B.; Nano, F.E.; Guttman, J.A. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Scientific Reports 2011, 1, 192.
- Tamilselvam, B.; Daefler, S. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. The Journal of Immunology 2008, 180, 8262-8271.
- Huang, H.; Weaver, A.; Wu, E.; Li, Y.; Gao, H.; Fan, W.; Wu, M. Lipid-based signaling modulates DNA repair response and survival against Klebsiella pneumoniae infection in host cells and in mice. American journal of respiratory cell and molecular biology 2013, 49, 798-807.
- Guo, Q.; Shen, N.; Yuan, K.; Li, J.; Wu, H.; Zeng, Y.; Fox III, J.; Bansal, A.K.; Singh, B.B.; Gao, H. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT 5 and A kt activity. European journal of immunology 2012, 42, 1500-1511.
- Sun, A.-H.; Liu, X.-X.; Yan, J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomedical Journal 2020, 43, 24-31.
- Faulstich, M.; Hagen, F.; Avota, E.; Kozjak-Pavlovic, V.; Winkler, A.C.; Xian, Y.; Schneider-Schaulies, S.; Rudel, T. Neutral sphingomyelinase 2 is a key factor for P or B-dependent invasion of Neisseria gonorrhoeae. Cellular microbiology 2015, 17, 241-253.
- Faulstich, M.; Böttcher, J.-P.; Meyer, T.F.; Fraunholz, M.; Rudel, T. Pilus phase variation switches gonococcal adherence to invasion by caveolin-1-dependent host cell signaling. PLoS pathogens 2013, 9, e1003373.
- Tamai, R.; Asai, Y.; Ogawa, T. Requirement for intercellular adhesion molecule 1 and caveolae in invasion of human oral epithelial cells by Porphyromonas gingivalis. Infection and immunity 2005, 73, 6290-6298.
- Lei, S.; Li, J.; Yu, J.; Li, F.; Pan, Y.; Chen, X.; Ma, C.; Zhao, W.; Tang, X. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. International journal of oral science 2023, 15, 3.
- Zaas, D.W.; Swan, Z.D.; Brown, B.J.; Li, G.; Randell, S.H.; Degan, S.; Sunday, M.E.; Wright, J.R.; Abraham, S.N. Counteracting signaling activities in lipid rafts associated with the invasion of lung epithelial cells by Pseudomonas aeruginosa. Journal of Biological Chemistry 2009, 284, 9955-9964.
- Bajmoczi, M.; Gadjeva, M.; Alper, S.L.; Pier, G.B.; Golan, D.E. Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. American Journal of Physiology-Cell Physiology 2009, 297, C263-C277.
- Thuenauer, R.; Kühn, K.; Guo, Y.; Kotsis, F.; Xu, M.; Trefzer, A.; Altmann, S.; Wehrum, S.; Heshmatpour, N.; Faust, B.; et al. The Lectin LecB Induces Patches with Basolateral Characteristics at the Apical Membrane to Promote Pseudomonas aeruginosa Host Cell Invasion. mBio 2022, 13, e0081922. [CrossRef]
- Yuan, K.; Huang, C.; Fox, J.; Gaid, M.; Weaver, A.; Li, G.; Singh, B.B.; Gao, H.; Wu, M. Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor κB (NF-κB). Journal of Biological Chemistry 2011, 286, 21814-21825.
- Gadjeva, M.; Paradis-Bleau, C.; Priebe, G.P.; Fichorova, R.; Pier, G.B. Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. The journal of immunology 2010, 184, 296-302.
- Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nature Reviews Microbiology 2021, 19, 375-390.
- Sahni, A.; Patel, J.; Narra, H.P.; Schroeder, C.L.; Walker, D.H.; Sahni, S.K. Fibroblast growth factor receptor-1 mediates internalization of pathogenic spotted fever rickettsiae into host endothelium. PloS one 2017, 12, e0183181.
- Martinez, J.J.; Seveau, S.; Veiga, E.; Matsuyama, S.; Cossart, P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 2005, 123, 1013-1023.
- Lim, J.S.; Shin, M.; Kim, H.-J.; Kim, K.S.; Choy, H.E.; Cho, K.A. Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent Rac1 activation and actin reorganization. The Journal of infectious diseases 2014, 210, 793-802.
- Hoeke, L.; Sharbati, J.; Pawar, K.; Keller, A.; Einspanier, R.; Sharbati, S. Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 2013, 8, e67300. [CrossRef]
- De Almeida, C.J.G. Caveolin-1 and caveolin-2 can be antagonistic partners in inflammation and beyond. Frontiers in immunology 2017, 8, 1530.
- Lim, J.S.; Na, H.S.; Lee, H.C.; Choy, H.E.; Park, S.C.; Han, J.M.; Cho, K.A. Caveolae-mediated entry of Salmonella typhimurium in a human M-cell model. Biochemical and biophysical research communications 2009, 390, 1322-1327.
- Medina, F.A.; De Almeida, C.J.; Dew, E.; Li, J.; Bonuccelli, G.; Williams, T.M.; Cohen, A.W.; Pestell, R.G.; Frank, P.G.; Tanowitz, H.B. Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infection and immunity 2006, 74, 6665-6674.
- Dhanda, A.S.; Guttman, J.A. Localization of host endocytic and actin-associated proteins during Shigella flexneri intracellular motility and intercellular spreading. The Anatomical Record 2023, 306, 1088-1110.
- Badaut, J.; Blochet, C.; Obenaus, A.; Hirt, L. Physiological and pathological roles of caveolins in the central nervous system. Trends in neurosciences 2024.
- Zhang, Q.; Zhu, H.; Cui, Z.; Li, Y.; Zhuo, J.; Ye, J.; Zhang, Z.; Lian, Z.; Du, Q.; Zhao, K.-N. The HPV16E7 Affibody as a Novel Potential Therapeutic Agent for Treating Cervical Cancer Is Likely Internalized through Dynamin and Caveolin-1 Dependent Endocytosis. Biomolecules 2022, 12, 1114.
- Kruglikov, I.L.; Scherer, P.E. Caveolin-1 as a possible target in the treatment for acne. Experimental dermatology 2020, 29, 177-183.
- Zhao, X.; Guo, J.; Jia, X.; Yang, Y.; Liu, L.; Nie, W.; Fang, Z. Internalization of Leptospira interrogans via diverse endocytosis mechanisms in human macrophages and vascular endothelial cells. PLOS Neglected Tropical Diseases 2022, 16, e0010778.




| Pathogen | Pathway | Caveolin involved | Reference |
|---|---|---|---|
| Bacterial invasion and intracellular survival | |||
| Anaplasma phagocytophilum | Bacterial internalization and intracellular survival within caveosome. | Cav-1 | [72] |
| Brucella spp. | Caveolin-mediated entry. | Cav-1 | [60,61] |
| Campylobacter jejuni | Helps in bacterial internalization and intracellular survival. | Cav-1 | [63,64] |
| Edwardsiella tarda | Caveolin mediated invasion and intracellular survival. | Cav-1 | [69,70] |
| Ehrlichia chaffeensis | Bacterial internalization and intracellular survival within caveosome. | Cav-1 | [72] |
| Escherichia coli | Caveolin mediated invasion and intracellular survival. | Cav-1 | [77,79] |
| Fransicella tularensis | Caveolin-mediated entry into macrophages and hepatocytes. Proliferation inside macrophages. | Cav-1 | [81,82] |
| Klebsiella pneumonae | Caveolin-mediated internalization. | Cav-1 | [83] |
| Leptospira | Caveolin-mediated entry. | Cav-1 | [107] |
| Listeria monocytogenes | Apical junctional remodeling for bacterial translocation and internalization. | Cav-1 | [43,45] |
| Neisseria gonorrhoeae | Caveolin-mediated invasion. | Cav-1 | [86,87]. |
| Porphyromonas gingivalis | Caveolin-mediated internalization. | Cav-1 | [88,89] |
| Pseudomonas aeruginosa | Lipid raft mediated endocytosis. | Cav-1 and Cav-2 | [25,91,92] |
| Rickettsia spp. | Caveolin mediated endocytic pathway for bacterial entry. | Cav-1 and Cav-2 | [92,95,96] |
| Salmonella enterica Serovar Typhimurium | Caveolin-mediated internalization and transcytosis. | Cav-1 and Cav-2. | [99,101] |
| Streptococcus spp. | Invasion and intracellular survival. Caveosome-mediated internalization. | Cav-1 | [55] |
| Intracellular survival and cell-cell spread | |||
| Leptospira | Intracellular migration through the vesicular transport system initiated by Caveolin. | Cav-1 | [85] |
| Listeria monocytogenes | Cell-to-cell spreading. | Cav-1 | [48,49] |
| Shigella flexneri | Cell-to-cell spreading. | Cav-1 | [103] |
| Modulation of host immune responses | |||
| Escherichia coli K1 | Increase inflammation in brain cells. | Cav-1 | [79] |
| Klebsiella pneumoniae | Modulation of host immunity through STAT5-Akt signaling pathway. | Cav-1 | [84] |
| Mycobacterium bovis Bacillus Calmette-Guérin (BCG) | Cav-1 regulates apoptosis and the inflammatory response in macrophages infected with BCG. | Cav-1 | [52] |
| Pseudomonas aeruginosa | Downregulates inflammatory response in host cells. | Cav-1 | [91,93,94] |
| Salmonella enterica Serovar Typhimurium | Regulate anti-inflammatory responses in macrophages. | Cav-1 | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
