Submitted:
06 December 2024
Posted:
06 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Phenotype Description
2.3. Probability of Occurrence of Mutations in a Collection of Watermelons and Determination of the Minimum Number of Plants to Obtain at Least One Mutant Plant
2.4. Experimental Design and Statistical Analysis
3. Results
3.1. Screening a Watermelon Collection for Natural Mutants
3.2. Inheritance of Mutation
3.3. Phenotyping of Some Important Traits of cv. Concurrent
3.4. Probability of Mutation
4. Discussion
4.1. Screening a Watermelon Collection for Natural Mutants
4.2. Inheritance of Mutation
4.3. Phenotyping of Some Important Traits of cv. CONCURRENT
4.4. Probability of Mutatio
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Whitaker, T.; Davis, G. In: Cucurbits. Interscience Publishers, Inc., New York. 1962.
- Ene, C. O.; Ogbonna, P. E.; Agbo, C. U.; Chukwudi, U. P. Heterosis and combining ability in cucumber (Cucumis sativus L.). Inform. Process. Agric. 2019, 6, 150–157. [Google Scholar] [CrossRef]
- Napolitano, M.; Terzaroli, N.; Kashyap, S.; Russi, L.; Jones-Evans, E.; Albertini, E. Exploring Heterosis in Melon (Cucumis melo L.). Plants 2020, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Darrudi, R.; Nazeri, V.; Soltani, F.; Shokrpour, M.; Ercolano, M.R. Evaluation of combining ability in Cucurbita pepo L. and Cucurbita moschata Duchesne accessions for fruit and seed quantitative traits. J. Appl. Res. Med. Aromat. Plants, 2018, 9, 70–77. [Google Scholar] [CrossRef]
- Watts, V.M. A marked male-sterile mutant in watermelon. Proc. Amer. Soc. Hort. Sci. 1962, 81, 498–505. [Google Scholar]
- Zhang, X.P.; Wang, M. A genetic male-sterile (ms) watermelon from China. Cucurbit Genetics Coop. Rpt. 1990, 13, 45–46. [Google Scholar]
- Dyutin, K.E.; Sokolov, S.D. Spontaneous mutant of watermelon with male sterility. Cytology and Genetics, 1990, 24, 56–57. [Google Scholar]
- Yang, D.; Paek, K.; Hwang, J.; Park, H. Characterization of a New Male Sterile Mutant in Watermelon. Cucurbit Genetics Cooperative Report 2001, 24, 52–58. [Google Scholar]
- Lozanov, P. Breeding of male-sterile parental components for facilitating the production of hybrid seeds from melon. Proceedings of the First Scientific Conference on Genetics and Breeding, Razgrad, Bulgaria, 1983.
- Lecouviour, M.; Pitrat, M.; Risser, G. A Fifth Gene for Male Sterility in Cucumis melo. Cucurbit Genetics Cooperative Report, 1990, 13, 34–35. [Google Scholar]
- Weng, Y.; Wehner, T. C. Cucumber Gene Catalog 2017. Cucurbit Genetics Cooperative Report 2017, 39–40. [Google Scholar]
- Pitrat, M. Melon. In: Handbook of plant breeding. Vol. 1, Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. Ed. by Prohens J and Nuez F. Springer, 2008; p. 283-316.
- LI, Y.; YANG, H.; YANG, J.; YANG, D. A Apetalous Gynoecious Mutant in Watermelon. Cucurbit Genetics Cooperative Report, 2009, 31-32, 15–16. [Google Scholar]
- Xiantao, J.; Depei, L. Discovery of Watermelon Gynoecious Gene gy. Acta Horticulturae Sinica, 2007, 34(1), 141–142. [Google Scholar]
- UPOV Code: CTRLS_LAN, (Citrullus lanatus (Thunb.) Matsum. et Nakai), International union for the protection of new varieties of plants, Geneva, TG/142/5 Rev. Watermelon, 2013-03-20 + 2019-10-29.
- Lidanski, T. Statistical methods in biology and agriculture. Zemizdat, Sofia, Bulgaria, 1988; p. 375.
- Cruz, C. D. GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 2013, 35(3), 271–276. [Google Scholar] [CrossRef]
- Wehner, T.C. Overview of the genes of watermelon, Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, (Pitrat M, ed), INRA, Avignon (France), May 21-24th, 2008.
- Dogimont, C. Gene List for Melon. Cucurbit Genetics Cooperative Report 2011, 33-34, 104–133. [Google Scholar]
- Lozanov, P. Heterosis in watermelon, melon and squashes. In: The heterosis and their use in vegetable production. Publisher house Hristo G. Danov – Plovdiv, Bulgaria, 1974, p. 254–322.
- Lecouviour, M.; Pitrat, M.; Risser, G. A fifth gene for male sterility in Cucumis melo. Cucurbit Genet. Coop. Rep. 1990, 13, 34–35. [Google Scholar]
- Ray, D.T.; Sherman, J.D. Desynaptic chromosome behavior of the gms mutant in watermelon. J Hered, 1988, 79, 397–399. [Google Scholar] [CrossRef]
- Zhang, X.P.; Rhodes, B.B.; Baird, W.V.; Skorupska, H.T.; Bridges, W.C. Phenotype, Inheritance, and Regulation of Expression of a New Virescent Mutant in Watermelon: Juvenile Albino. J. AMER. SOC. HORT. SCI. 1996, 121(4), 609–615. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, X.; Wei, Z.; Li, Q.; Li, X. Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]. Scientia Horticulturae, 1998, 74, 175–181. [Google Scholar]
- Sugyama, K.; Morishita, M. Production of seedless watermelon using soft-X-irradiated pollen. Scientia Horticulturae, 2000, 84(3-4), 255–264. [Google Scholar] [CrossRef]
- Velkov, N.; Tomlekova, N.; Sarsu, F. 2016. Sensitivity of watermelon variety Bojura to mutant agents 60Co and EMS. J. BioSci. Biotech. 2016, 5(1), 105–110. [Google Scholar]


| Self-pollinated progeny | Total | Male fertile | Male sterile | Ratio Obs:Exp | Chi square | Probability P(%) |
|---|---|---|---|---|---|---|
| 2022 | ||||||
| Concurrent 4-1 | 18 | 14 | 4 | 3:1 | 0.0741 | 78.55 |
| Concurrent 4-4 | 18 | 12 | 6 | 3:1 | 0.6667 | 41.42 |
| Concurrent 4-6 | 17 | 13 | 4 | 3:1 | 0.0196 | 88.86 |
| 2023 | ||||||
| Concurrent 4-1-3 | 10 | 7 | 3 | 3:1 | 0.1333 | 71.50 |
| Concurrent 4-4-6 | 12 | 8 | 4 | 3:1 | 0.4444 | 50.50 |
| Concurrent 4-6-8 | 14 | 10 | 4 | 3:1 | 0.0952 | 75.76 |
| Total | ||||||
| Concurrent | 89 | 64 | 25 | 3:1 | 0.4532 | 50.08 |
| Genotype | Days to mass flowering | Days to ripening | Vegetation period (days) | Fruit weight (kg) | Fruit length (cm); | Fruit diameter (cm); | Rind thickness (cm) | TSS (%) |
| 2022 | ||||||||
| Concurrent 4-1 | 56 | 35 | 91 | 3.414 | 18 | 19 | 0.9 | 8.2 |
| Concurrent 4-4 | 55 | 42 | 98 | 4.316 | 22 | 20 | 0.6 | 7.0 |
| Concurrent 4-6 | 56 | 33 | 89 | 4.156 | 19.5 | 20 | 0.9 | 8.2 |
| 2023 | ||||||||
| Concurrent 4-1-3 | 61 | 50 | 111 | 1.754 | 14 | 15 | 1 | 9.0 |
| Concurrent 4-4-6 | 59 | 44 | 103 | 1.140 | 14 | 12 | 1 | 9.8 |
| Concurrent 4-6-8 | 60 | 55 | 115 | 1.446 | 14 | 14 | 0.6 | 8.0 |
| Mean | 57.8 | 43.2 | 101.2 | 2.7 | 16.9 | 16.7 | 0.8 | 8.4 |
| Standard Error± | 1.0 | 3.5 | 4.3 | 0.6 | 1.4 | 1.4 | 0.1 | 0.4 |
| Confidence Level (95.0%) | 2.6 | 8.9 | 11.0 | 1.5 | 3.6 | 3.6 | 0.2 | 1.0 |
| Probability of mutation occurring | Confidence probability | nmin |
|---|---|---|
| 0.00067 | P3 – 0.95 | 4492 |
| 0.067% | P3 – 0.99 | 6905 |
| P3 = 0.999 | 10358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
