Alginate hydrogels are integral of many cell-based models in tissue engineering and regenerative medicine. As a natural biomaterial, the properties of alginates can vary and be widely adjusted through the gelation process, making them versatile additives or bulk materials for scaffolds, microcarriers or encapsulation matrices in tissue engineering and regenerative medicine. The requirements for alginates used in biomedical applications differ significantly from those for technical applications. Particularly, the generation of novel niches for stem cells requires reliable and predictable properties of the resulting hydrogel. Ultra-high viscosity (UHV) alginates possess alginates with special physicochemical properties, and thus far, numerical simulations for the gelation process are currently lacking but highly relevant for future designs of stem cell niches and cell-based models. In this article, the gelation of UHV alginates is studied using a microscopic approach for disc- and sphere-shaped hydrogels. Based on the collected data, a multiphase continuum model was implemented to describe the cross-linking process of UHV alginate polysaccharides. The model utilizes four coupled kinetic equations based on mixture theory, which are solved using finite element software. A good agreement between simulation results and experimental data was found, establishing a foundation for future refinements in the development of an interactive tool for cell biologists and material scientists.
Keywords:
Subject: Biology and Life Sciences - Biology and Biotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.