Submitted:
29 December 2024
Posted:
30 December 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Pathophysiological Findings Linked to Dementia of AD/ADRD
Drug Trials and Failures
Drug Trial Progress and Hope
Discussion and Conclusion
Funding
Conflict of Interest
References
- 2023 Alzheimer's disease facts and figures. Alzheimers Dement 2023, 19(4), 1598–1695. [CrossRef]
- Abushakra, S.; Porsteinsson, A.; Vellas, B.; Cummings, J.; Gauthier, S.; Hey, J. A.; Power, A.; Hendrix, S.; Wang, P.; Shen, L.; Sampalis, J.; Tolar, M. Clinical Benefits of Tramiprosate in Alzheimer's Disease Are Associated with Higher Number of APOE4 Alleles: The "APOE4 Gene-Dose Effect". J Prev Alzheimers Dis 2016, 3(4), 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M. A.; Kareem, O.; Khushtar, M.; Akbar, M.; Haque, M. R.; Iqubal, A.; Haider, M. F.; Pottoo, F. H.; Abdulla, F. S.; Al-Haidar, M. B.; Alhajri, N. Neuroinflammation: A Potential Risk for Dementia. Int J Mol Sci 2022, 23(2). [Google Scholar] [CrossRef]
- Ahn, J. E.; Carrieri, C.; Dela Cruz, F.; Fullerton, T.; Hajos-Korcsok, E.; He, P.; Kantaridis, C.; Leurent, C.; Liu, R.; Mancuso, J.; Mendes da Costa, L.; Qiu, R. Pharmacokinetic and Pharmacodynamic Effects of a gamma-Secretase Modulator, PF-06648671, on CSF Amyloid-beta Peptides in Randomized Phase I Studies. Clin Pharmacol Ther 2020, 107(1), 211–220. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Gee, C.; Stowell, K.; Coulthard, D.; Boche, D. T Lymphocytes and Their Potential Role in Dementia with Lewy Bodies. Cells 2023, 12(18). [Google Scholar] [CrossRef] [PubMed]
- Arndt, J. W.; Qian, F.; Smith, B. A.; Quan, C.; Kilambi, K. P.; Bush, M. W.; Walz, T.; Pepinsky, R. B.; Bussiere, T.; Hamann, S.; Cameron, T. O.; Weinreb, P. H. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-beta. Sci Rep 2018, 8(1), 6412. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Tatavarthy, M.; Bennett, D. A. The Relation of Diabetes to Memory Function. Curr Neurol Neurosci Rep 2020, 20(12), 64. [Google Scholar] [CrossRef]
- Bareggi, S. R.; Cornelli, U. Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther 2012, 18(1), 41–46. [Google Scholar] [CrossRef] [PubMed]
- Bayer, T. A. Pyroglutamate Abeta cascade as drug target in Alzheimer's disease. Mol Psychiatry 2022, 27(4), 1880–1885. [Google Scholar] [CrossRef] [PubMed]
- Bettcher, B. M.; Tansey, M. G.; Dorothee, G.; Heneka, M. T. Peripheral and central immune system crosstalk in Alzheimer disease-a research prospectus. Nat Rev Neurol 2021, 17(11), 689–701. [Google Scholar] [CrossRef] [PubMed]
- Bir, S. C.; Khan, M. W.; Javalkar, V.; Toledo, E. G.; Kelley, R. E. Emerging Concepts in Vascular Dementia: A Review. J Stroke Cerebrovasc Dis 2021, 30(8), 105864. [Google Scholar] [CrossRef] [PubMed]
- Bogar, F.; Fulop, L.; Penke, B. Novel Therapeutic Target for Prevention of Neurodegenerative Diseases: Modulation of Neuroinflammation with Sig-1R Ligands. Biomolecules 2022, 12(3). [Google Scholar] [CrossRef] [PubMed]
- Bouter, Y.; Liekefeld, H.; Pichlo, S.; Westhoff, A. C.; Fenn, L.; Bakrania, P.; Bayer, T. A. Donanemab detects a minor fraction of amyloid-beta plaques in post-mortem brain tissue of patients with Alzheimer's disease and Down syndrome. Acta Neuropathol 2022, 143(5), 601–603. [Google Scholar] [CrossRef] [PubMed]
- Bullich, S.; Mueller, A.; De Santi, S.; Koglin, N.; Krause, S.; Kaplow, J.; Kanekiyo, M.; Roe-Vellve, N.; Perrotin, A.; Jovalekic, A.; Scott, D.; Gee, M.; Stephens, A.; Irizarry, M. Evaluation of tau deposition using (18)F-PI-2620 PET in MCI and early AD subjects-a MissionAD tau sub-study. Alzheimers Res Ther 2022, 14(1), 105. [Google Scholar] [CrossRef] [PubMed]
- Burstein, A. H.; Sabbagh, M.; Andrews, R.; Valcarce, C.; Dunn, I.; Altstiel, L. Development of Azeliragon, an Oral Small Molecule Antagonist of the Receptor for Advanced Glycation Endproducts, for the Potential Slowing of Loss of Cognition in Mild Alzheimer's Disease. J Prev Alzheimers Dis 2018, 5(2), 149–154. [Google Scholar] [CrossRef]
- Calsolaro, V.; Edison, P. Alterations in Glucose Metabolism in Alzheimer's Disease. Recent Pat Endocr Metab Immune Drug Discov 2016, 10(1), 31–39. [Google Scholar] [CrossRef]
- CDC’s National Center for Health Statistics, Leading Causes of Death. 2024. Available online: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm.
- Cenini, G.; Voos, W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019, 10, 902. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C. D.; Schioth, H. B.; Grillo, C. A.; Benedict, C. Intranasal insulin in Alzheimer's disease: Food for thought. Neuropharmacology 2018, 136 Pt B, 196–201. [Google Scholar] [CrossRef]
- Chen, N.; Caruso, C.; Alonso, A.; Derebail, V. K.; Kshirsagar, A. V.; Sharrett, A. R.; Key, N. S.; Gottesman, R. F.; Grove, M. L.; Bressler, J.; Boerwinkle, E.; Windham, B. G.; Mosley, T. H., Jr.; Hyacinth, H. I. Association of sickle cell trait with measures of cognitive function and dementia in African Americans. eNeurologicalSci 2019, 16, 100201. [Google Scholar] [CrossRef]
- Cheng, S.; Hou, J.; Zhang, C.; Xu, C.; Wang, L.; Zou, X.; Yu, H.; Shi, Y.; Yin, Z.; Chen, G. Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration. Sci Rep 2015, 5, 10535. [Google Scholar] [CrossRef] [PubMed]
- Cherny, R. A.; Atwood, C. S.; Xilinas, M. E.; Gray, D. N.; Jones, W. D.; McLean, C. A.; Barnham, K. J.; Volitakis, I.; Fraser, F. W.; Kim, Y.; Huang, X.; Goldstein, L. E.; Moir, R. D.; Lim, J. T.; Beyreuther, K.; Zheng, H.; Tanzi, R. E.; Masters, C. L.; Bush, A. I. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 2001, 30(3), 665–676. [Google Scholar] [CrossRef]
- Choi, S. H.; Tanzi, R. E. Is Alzheimer's Disease a Neurogenesis Disorder? Cell Stem Cell 2019, 25(1), 7–8. [Google Scholar] [CrossRef] [PubMed]
- Coric, V.; Salloway, S.; van Dyck, C. H.; Dubois, B.; Andreasen, N.; Brody, M.; Curtis, C.; Soininen, H.; Thein, S.; Shiovitz, T.; Pilcher, G.; Ferris, S.; Colby, S.; Kerselaers, W.; Dockens, R.; Soares, H.; Kaplita, S.; Luo, F.; Pachai, C.; Berman, R. M. Targeting Prodromal Alzheimer Disease With Avagacestat: A Randomized Clinical Trial. JAMA Neurol 2015, 72(11), 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Coric, V.; van Dyck, C. H.; Salloway, S.; Andreasen, N.; Brody, M.; Richter, R. W.; Soininen, H.; Thein, S.; Shiovitz, T.; Pilcher, G.; Colby, S.; Rollin, L.; Dockens, R.; Pachai, C.; Portelius, E.; Andreasson, U.; Blennow, K.; Soares, H.; Albright, C.; Berman, R. M. Safety and tolerability of the gamma-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch Neurol 2012, 69(11), 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Craft, S.; Baker, L. D.; Montine, T. J.; Minoshima, S.; Watson, G. S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S. R.; Green, P. S.; Leverenz, J.; Cross, D.; Gerton, B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 2012, 69(1), 29–38. [Google Scholar] [CrossRef] [PubMed]
- Cumbo, E.; Ligori, L. D. Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer's disease. Epilepsy Behav 2010, 17(4), 461–466. [Google Scholar] [CrossRef]
- Cummings, J. Lessons Learned from Alzheimer Disease: Clinical Trials with Negative Outcomes. Clin Transl Sci 2018, 11(2), 147–152. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. L.; Morstorf, T.; Zhong, K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014, 6(4), 37. [Google Scholar] [CrossRef] [PubMed]
- Dani, M.; Wood, M.; Mizoguchi, R.; Fan, Z.; Edginton, T.; Hinz, R.; Win, Z.; Brooks, D. J.; Edison, P. Tau Aggregation Correlates with Amyloid Deposition in Both Mild Cognitive Impairment and Alzheimer's Disease Subjects. J Alzheimers Dis 2019, 70(2), 455–465. [Google Scholar] [CrossRef] [PubMed]
- Decourt, B.; Drumm-Gurnee, D.; Wilson, J.; Jacobson, S.; Belden, C.; Sirrel, S.; Ahmadi, M.; Shill, H.; Powell, J.; Walker, A.; Gonzales, A.; Macias, M.; Sabbagh, M. N. Poor Safety and Tolerability Hamper Reaching a Potentially Therapeutic Dose in the Use of Thalidomide for Alzheimer's Disease: Results from a Double-Blind, Placebo-Controlled Trial. Curr Alzheimer Res 2017, 14(4), 403–411. [Google Scholar] [CrossRef]
- Doggrell, S. A. Still grasping at straws: donanemab in Alzheimer's disease. Expert Opin Investig Drugs 2021, 30(8), 797–801. [Google Scholar] [CrossRef] [PubMed]
- Dokholyan, N. V.; Mohs, R. C.; Bateman, R. J. Challenges and progress in research, diagnostics, and therapeutics in Alzheimer's disease and related dementias. Alzheimers Dement (N Y) 2022, 8(1), e12330. [Google Scholar] [CrossRef]
- Doody, R. S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R. G.; Aisen, P. S.; Alzheimer's Disease Cooperative Study Steering, C.; Siemers, E.; Sethuraman, G.; Mohs, R.; Semagacestat Study, G. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N Engl J Med 2013, 369(4), 341–350. [Google Scholar] [CrossRef]
- Egan, M. F.; Kost, J.; Tariot, P. N.; Aisen, P. S.; Cummings, J. L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Vandenberghe, R.; Mo, Y.; Michelson, D. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer's Disease. N Engl J Med 2018, 378(18), 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Egan, M. F.; Kost, J.; Voss, T.; Mukai, Y.; Aisen, P. S.; Cummings, J. L.; Tariot, P. N.; Vellas, B.; van Dyck, C. H.; Boada, M.; Zhang, Y.; Li, W.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Mo, Y.; Sur, C.; Michelson, D. Randomized Trial of Verubecestat for Prodromal Alzheimer's Disease. N Engl J Med 2019, 380(15), 1408–1420. [Google Scholar] [CrossRef]
- Egan, M. F.; Mukai, Y.; Voss, T.; Kost, J.; Stone, J.; Furtek, C.; Mahoney, E.; Cummings, J. L.; Tariot, P. N.; Aisen, P. S.; Vellas, B.; Lines, C.; Michelson, D. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer's disease. Alzheimers Res Ther 2019, 11(1), 68. [Google Scholar] [CrossRef]
- Endres, K.; Fahrenholz, F.; Lotz, J.; Hiemke, C.; Teipel, S.; Lieb, K.; Tuscher, O.; Fellgiebel, A. Increased CSF APPs-alpha levels in patients with Alzheimer disease treated with acitretin. Neurology 2014, 83(21), 1930–1935. [Google Scholar] [CrossRef]
- Fang, C.; Hernandez, P.; Liow, K.; Damiano, E.; Zetterberg, H.; Blennow, K.; Feng, D.; Chen, M.; Maccecchini, M. Buntanetap, a Novel Translational Inhibitor of Multiple Neurotoxic Proteins, Proves to Be Safe and Promising in Both Alzheimer's and Parkinson's Patients. J Prev Alzheimers Dis 2023, 10(1), 25–33. [Google Scholar] [CrossRef] [PubMed]
- FDA Converts Novel Alzheimer’s Disease Treatment to Traditional Approval-Action Follows Confrmatory Trial to Verify Clinical Benefit. 2023.
- Femminella, G. D.; Dani, M.; Wood, M.; Fan, Z.; Calsolaro, V.; Atkinson, R.; Edginton, T.; Hinz, R.; Brooks, D. J.; Edison, P. Microglial activation in early Alzheimer trajectory is associated with higher gray matter volume. Neurology 2019, 92(12), e1331–e1343. [Google Scholar] [CrossRef]
- Friedman, E. M.; Shih, R. A.; Langa, K. M.; Hurd, M. D. US Prevalence And Predictors Of Informal Caregiving For Dementia. Health Aff (Millwood) 2015, 34(10), 1637–1641. [Google Scholar] [CrossRef]
- Frozza, R. L.; Lourenco, M. V.; De Felice, F. G. Challenges for Alzheimer's Disease Therapy: Insights from Novel Mechanisms Beyond Memory Defects. Front Neurosci 2018, 12, 37. [Google Scholar] [CrossRef]
- Gabin, J. M.; Tambs, K.; Saltvedt, I.; Sund, E.; Holmen, J. Association between blood pressure and Alzheimer disease measured up to 27 years prior to diagnosis: the HUNT Study. Alzheimers Res Ther 2017, 9(1), 37. [Google Scholar] [CrossRef] [PubMed]
- Gold, M. Phase II clinical trials of anti-amyloid beta antibodies: When is enough, enough? Alzheimers Dement (N Y) 2017, 3(3), 402–409. [Google Scholar] [CrossRef]
- Green, R. C.; Schneider, L. S.; Amato, D. A.; Beelen, A. P.; Wilcock, G.; Swabb, E. A.; Zavitz, K. H.; Tarenflurbil Phase 3 Study, G. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 2009, 302(23), 2557–2564. [Google Scholar] [CrossRef] [PubMed]
- Grundman, M.; Morgan, R.; Lickliter, J. D.; Schneider, L. S.; DeKosky, S.; Izzo, N. J.; Guttendorf, R.; Higgin, M.; Pribyl, J.; Mozzoni, K.; Safferstein, H.; Catalano, S. M. A phase 1 clinical trial of the sigma-2 receptor complex allosteric antagonist CT1812, a novel therapeutic candidate for Alzheimer's disease. Alzheimers Dement (N Y) 2019, 5, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Haas, L. T.; Salazar, S. V.; Smith, L. M.; Zhao, H. R.; Cox, T. O.; Herber, C. S.; Degnan, A. P.; Balakrishnan, A.; Macor, J. E.; Albright, C. F.; Strittmatter, S. M. Silent Allosteric Modulation of mGluR5 Maintains Glutamate Signaling while Rescuing Alzheimer's Mouse Phenotypes. Cell Rep 2017, 20(1), 76–88. [Google Scholar] [CrossRef] [PubMed]
- Hamelin, L.; Lagarde, J.; Dorothee, G.; Leroy, C.; Labit, M.; Comley, R. A.; de Souza, L. C.; Corne, H.; Dauphinot, L.; Bertoux, M.; Dubois, B.; Gervais, P.; Colliot, O.; Potier, M. C.; Bottlaender, M.; Sarazin, M.; Clinical, I. t. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain 2016, 139 Pt 4, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, A.; Vasefi, M.; Vander Tuin, C.; McQuaid, R. J.; Anisman, H.; Ferguson, S. S. Chronic Pharmacological mGluR5 Inhibition Prevents Cognitive Impairment and Reduces Pathogenesis in an Alzheimer Disease Mouse Model. Cell Rep 2016, 15(9), 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M. T.; Carson, M. J.; El Khoury, J.; Landreth, G. E.; Brosseron, F.; Feinstein, D. L.; Jacobs, A. H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R. M.; Herrup, K.; Frautschy, S. A.; Finsen, B.; Brown, G. C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Kummer, M. P. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015, 14(4), 388–405. [Google Scholar] [CrossRef]
- Henley, D.; Raghavan, N.; Sperling, R.; Aisen, P.; Raman, R.; Romano, G. Preliminary Results of a Trial of Atabecestat in Preclinical Alzheimer's Disease. N Engl J Med 2019, 380(15), 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Rahfeld, J. U.; Schenk, M.; Ponath, F.; Makioka, K.; Hutter-Paier, B.; Lues, I.; Lemere, C. A.; Schilling, S. Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Abeta Pathology in Transgenic Mice. Int J Mol Sci 2021, 22(21). [Google Scholar] [CrossRef] [PubMed]
- Holthoewer, D.; Endres, K.; Schuck, F.; Hiemke, C.; Schmitt, U.; Fahrenholz, F. Acitretin, an enhancer of alpha-secretase expression, crosses the blood-brain barrier and is not eliminated by P-glycoprotein. Neurodegener Dis 2012, 10(1-4), 224–228. [Google Scholar] [CrossRef] [PubMed]
- Hosoki, S.; Hansra, G. K.; Jayasena, T.; Poljak, A.; Mather, K. A.; Catts, V. S.; Rust, R.; Sagare, A.; Kovacic, J. C.; Brodtmann, A.; Wallin, A.; Zlokovic, B. V.; Ihara, M.; Sachdev, P. S. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023, 19(12), 737–753. [Google Scholar] [CrossRef]
- Huang, L. K.; Kuan, Y. C.; Lin, H. W.; Hu, C. J. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update. J Biomed Sci 2023, 30(1), 83. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, B. P.; Frigerio, E.; Breda, M.; Fiorentini, F.; Fernandez, M.; Sivilia, S.; Giardino, L.; Calza, L.; Norris, D.; Casula, D.; Shenouda, M. Pharmacokinetics and pharmacodynamics of CHF5074 after short-term administration in healthy subjects. Alzheimer Dis Assoc Disord 2013, 27(3), 278–286. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, M. C.; Sims, J. R.; Lowe; et al. O4–08-06: Safety, p. P., and forbetapir F-18 positron, of, e. t. P. a. m. d. a., LY3002813, a. β.-a. p.-s. a., in Alzheimer’s disease., & 2016;12:P352–3. (2016). O4-08-06: SAFETY, PHARMACOKINETICS (PK), AND FLORBETAPIR F-18 POSITRON EMISSION TOMOGRAPHY (PET) AFTER MULTIPLE DOSE ADMINISTRATION OF LY3002813, A β-AMYLOID PLAQUE-SPECIFIC ANTIBODY, IN ALZHEIMER’S DISEASE (AD). Alzheimers & Dementia 12.
- Jacobsen, H.; Ozmen, L.; Caruso, A.; Narquizian, R.; Hilpert, H.; Jacobsen, B.; Terwel, D.; Tanghe, A.; Bohrmann, B. Combined treatment with a BACE inhibitor and anti-Abeta antibody gantenerumab enhances amyloid reduction in APPLondon mice. J Neurosci 2014, 34(35), 11621–11630. [Google Scholar] [CrossRef] [PubMed]
- Jutkowitz, E.; Kane, R. L.; Gaugler, J. E.; MacLehose, R. F.; Dowd, B.; Kuntz, K. M. Societal and Family Lifetime Cost of Dementia: Implications for Policy. J Am Geriatr Soc 2017, 65(10), 2169–2175. [Google Scholar] [CrossRef] [PubMed]
- Kametani, F.; Hasegawa, M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Front Neurosci 2018, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Katsel, P.; Haroutunian, V. Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. Dialogues Clin Neurosci 2019, 21(1), 7–19. [Google Scholar] [CrossRef] [PubMed]
- Kawas, C. H.; Kim, R. C.; Sonnen, J. A.; Bullain, S. S.; Trieu, T.; Corrada, M. M. Multiple pathologies are common and related to dementia in the oldest-old: The 90+ Study. Neurology 2015, 85(6), 535–542. [Google Scholar] [CrossRef]
- Kim, C. K.; Lee, Y. R.; Ong, L.; Gold, M.; Kalali, A.; Sarkar, J. Alzheimer's Disease: Key Insights from Two Decades of Clinical Trial Failures. J Alzheimers Dis 2022, 87(1), 83–100. [Google Scholar] [CrossRef]
- Kim, J.; Jeon, H.; Yun Kim, H.; Kim, Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-beta Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023, 24(19), e202300328. [Google Scholar] [CrossRef]
- Kinney, J. W.; Bemiller, S. M.; Murtishaw, A. S.; Leisgang, A. M.; Salazar, A. M.; Lamb, B. T. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y) 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Kreisl, W. C.; Henter, I. D.; Innis, R. B. Imaging Translocator Protein as a Biomarker of Neuroinflammation in Dementia. Adv Pharmacol 2018, 82, 163–185. [Google Scholar] [CrossRef] [PubMed]
- Kreisl, W. C.; Lyoo, C. H.; Liow, J. S.; Wei, M.; Snow, J.; Page, E.; Jenko, K. J.; Morse, C. L.; Zoghbi, S. S.; Pike, V. W.; Turner, R. S.; Innis, R. B. (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer's disease. Neurobiol Aging 2016, 44, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. Editorial: Neuroinflammation and Cognition. Front Aging Neurosci 2018, 10, 413. [Google Scholar] [CrossRef]
- Kutzsche, J.; Jurgens, D.; Willuweit, A.; Adermann, K.; Fuchs, C.; Simons, S.; Windisch, M.; Humpel, M.; Rossberg, W.; Wolzt, M.; Willbold, D. Safety and pharmacokinetics of the orally available antiprionic compound PRI-002: A single and multiple ascending dose phase I study. Alzheimers Dement (N Y) 2020, 6(1), e12001. [Google Scholar] [CrossRef]
- LaClair, K. D.; Manaye, K. F.; Lee, D. L.; Allard, J. S.; Savonenko, A. V.; Troncoso, J. C.; Wong, P. C. Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener 2013, 8, 18. [Google Scholar] [CrossRef]
- Lahiri, D. K.; Chen, D.; Maloney, B.; Holloway, H. W.; Yu, Q. S.; Utsuki, T.; Giordano, T.; Sambamurti, K.; Greig, N. H. The experimental Alzheimer's disease drug posiphen [(+)-phenserine] lowers amyloid-beta peptide levels in cell culture and mice. J Pharmacol Exp Ther 2007, 320(1), 386–396. [Google Scholar] [CrossRef]
- Lawson, L. J.; Perry, V. H.; Dri, P.; Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39(1), 151–170. [Google Scholar] [CrossRef] [PubMed]
- Lecca, D.; Jung, Y. J.; Scerba, M. T.; Hwang, I.; Kim, Y. K.; Kim, S.; Modrow, S.; Tweedie, D.; Hsueh, S. C.; Liu, D.; Luo, W.; Glotfelty, E.; Li, Y.; Wang, J. Y.; Luo, Y.; Hoffer, B. J.; Kim, D. S.; McDevitt, R. A.; Greig, N. H. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement 2022, 18(11), 2327–2340. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021, 17(3), 157–172. [Google Scholar] [CrossRef]
- Li, T.; Lu, L.; Pember, E.; Li, X.; Zhang, B.; Zhu, Z. New Insights into Neuroinflammation Involved in Pathogenic Mechanism of Alzheimer's Disease and Its Potential for Therapeutic Intervention. Cells 2022, 11(12). [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2019. Front Aging Neurosci 2022, 14, 937486. [Google Scholar] [CrossRef] [PubMed]
- Lilly, E. Lilly Announces Topline Results for Solanezumab from the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) Study. 2020. Available online: https://investor.lilly.com/news-releases/news-release-details/lilly-announces-topline-results-solanezumab-dominantly-inherited.
- Litke, R.; Garcharna, L. C.; Jiwani, S.; Neugroschl, J. Modifiable Risk Factors in Alzheimer Disease and Related Dementias: A Review. Clin Ther 2021, 43(6), 953–965. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, X.; Li, Y.; Wang, T. Cerebrospinal fluid CD4+ T lymphocyte-derived miRNA-let-7b can enhances the diagnostic performance of Alzheimer's disease biomarkers. Biochem Biophys Res Commun 2018, 495(1), 1144–1150. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, A. B.; Hennessy, E.; Murray, C. L.; Nazmi, A.; Delaney, H. J.; Healy, D.; Fagan, S. G.; Rooney, M.; Stewart, E.; Lewis, A.; de Barra, N.; Scarry, P.; Riggs-Miller, L.; Boche, D.; Cunningham, M. O.; Cunningham, C. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer's disease: IL-1beta drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement 2021, 17(10), 1735–1755. [Google Scholar] [CrossRef]
- Lu, J.; Pan, Q.; Zhou, J.; Weng, Y.; Chen, K.; Shi, L.; Zhu, G.; Chen, C.; Li, L.; Geng, M.; Zhang, Z. Pharmacokinetics, distribution, and excretion of sodium oligomannate, a recently approved anti-Alzheimer's disease drug in China. J Pharm Anal 2022, 12(1), 145–155. [Google Scholar] [CrossRef] [PubMed]
- Lueg, G.; Gross, C. C.; Lohmann, H.; Johnen, A.; Kemmling, A.; Deppe, M.; Groger, J.; Minnerup, J.; Wiendl, H.; Meuth, S. G.; Duning, T. Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer's disease. Neurobiol Aging 2015, 36(1), 81–89. [Google Scholar] [CrossRef] [PubMed]
- Maia, M. A.; Sousa, E. BACE-1 and gamma-Secretase as Therapeutic Targets for Alzheimer's Disease. Pharmaceuticals (Basel) 2019, 12(1). [Google Scholar] [CrossRef]
- Manzano, S.; Aguera, L.; Aguilar, M.; Olazaran, J. A Review on Tramiprosate (Homotaurine) in Alzheimer's Disease and Other Neurocognitive Disorders. Front Neurol 2020, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Masters, C. L.; Bateman, R.; Blennow, K.; Rowe, C. C.; Sperling, R. A.; Cummings, J. L. Alzheimer's disease. Nat Rev Dis Primers 2015, 1, 15056. [Google Scholar] [CrossRef] [PubMed]
- May, P. C.; Willis, B. A.; Lowe, S. L.; Dean, R. A.; Monk, S. A.; Cocke, P. J.; Audia, J. E.; Boggs, L. N.; Borders, A. R.; Brier, R. A.; Calligaro, D. O.; Day, T. A.; Ereshefsky, L.; Erickson, J. A.; Gevorkyan, H.; Gonzales, C. R.; James, D. E.; Jhee, S. S.; Komjathy, S. F.; Mergott, D. J. The potent BACE1 inhibitor LY2886721 elicits robust central Abeta pharmacodynamic responses in mice, dogs, and humans. J Neurosci 2015, 35(3), 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.; Baglietto-Vargas, D.; LaFerla, F. M. The role of tau in Alzheimer's disease and related disorders. CNS Neurosci Ther 2011, 17(5), 514–524. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Jackson, R.; Paul, G.; Shi, J.; Sabbagh, M. Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 2017, 26(6), 735–739. [Google Scholar] [CrossRef] [PubMed]
- Mintun, M. A.; Lo, A. C.; Duggan Evans, C.; Wessels, A. M.; Ardayfio, P. A.; Andersen, S. W.; Shcherbinin, S.; Sparks, J.; Sims, J. R.; Brys, M.; Apostolova, L. G.; Salloway, S. P.; Skovronsky, D. M. Donanemab in Early Alzheimer's Disease. N Engl J Med 2021, 384(18), 1691–1704. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M. P.; LeVine, H., 3rd. Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 2010, 19(1), 311–323. [Google Scholar] [CrossRef]
- Nicoll, J. A.; Wilkinson, D.; Holmes, C.; Steart, P.; Markham, H.; Weller, R. O. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003, 9(4), 448–452. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, T. Epidemiological Evidence of the Relationship Between Diabetes and Dementia. Adv Exp Med Biol 2019, 1128, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Nunomura, A.; Perry, G. RNA and Oxidative Stress in Alzheimer's Disease: Focus on microRNAs. Oxid Med Cell Longev 2020, 2020, 2638130. [Google Scholar] [CrossRef]
- O'Hare, E.; Jeggo, R.; Kim, E. M.; Barbour, B.; Walczak, J. S.; Palmer, P.; Lyons, T.; Page, D.; Hanna, D.; Meara, J. R.; Spanswick, D.; Guo, J. P.; McGeer, E. G.; McGeer, P. L.; Hobson, P. Lack of support for bexarotene as a treatment for Alzheimer's disease. Neuropharmacology 2016, 100, 124–130. [Google Scholar] [CrossRef] [PubMed]
- O'Neill, B. T.; Beck, E. M.; Butler, C. R.; Nolan, C. E.; Gonzales, C.; Zhang, L.; Doran, S. D.; Lapham, K.; Buzon, L. M.; Dutra, J. K.; Barreiro, G.; Hou, X.; Martinez-Alsina, L. A.; Rogers, B. N.; Villalobos, A.; Murray, J. C.; Ogilvie, K.; LaChapelle, E. A.; Chang, C.; Brodney, M. A. Design and Synthesis of Clinical Candidate PF-06751979: A Potent, Brain Penetrant, beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor Lacking Hypopigmentation. J Med Chem 2018, 61(10), 4476–4504. [Google Scholar] [CrossRef]
- Palmer, A. M. Neuroprotective therapeutics for Alzheimer's disease: progress and prospects. Trends Pharmacol Sci 2011, 32(3), 141–147. [Google Scholar] [CrossRef] [PubMed]
- Pasqualetti, P.; Bonomini, C.; Dal Forno, G.; Paulon, L.; Sinforiani, E.; Marra, C.; Zanetti, O.; Rossini, P. M. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer's disease. Aging Clin Exp Res 2009, 21(2), 102–110. [Google Scholar] [CrossRef] [PubMed]
- Pike, C. J. Sex and the development of Alzheimer's disease. J Neurosci Res 2017, 95(1-2), 671–680. [Google Scholar] [CrossRef]
- Pontecorvo, M. J.; Lu, M.; Burnham, S. C.; Schade, A. E.; Dage, J. L.; Shcherbinin, S.; Collins, E. C.; Sims, J. R.; Mintun, M. A. Association of Donanemab Treatment With Exploratory Plasma Biomarkers in Early Symptomatic Alzheimer Disease: A Secondary Analysis of the TRAILBLAZER-ALZ Randomized Clinical Trial. JAMA Neurol 2022, 79(12), 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Ahn, J. E.; Alexander, R.; Brodney, M. A.; He, P.; Leurent, C.; Mancuso, J.; Margolin, R. A.; Tankisheva, E.; Chen, D. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamic Effects of PF-06751979, a Potent and Selective Oral BACE1 Inhibitor: Results from Phase I Studies in Healthy Adults and Healthy Older Subjects. J Alzheimers Dis 2019, 71(2), 581–595. [Google Scholar] [CrossRef] [PubMed]
- R, A. A. Risk factors for Alzheimer's disease. Folia Neuropathol 2019, 57(2), 87–105. [Google Scholar] [CrossRef]
- Rajan, K. B.; Weuve, J.; Barnes, L. L.; McAninch, E. A.; Wilson, R. S.; Evans, D. A. Population estimate of people with clinical Alzheimer's disease and mild cognitive impairment in the United States (2020-2060). Alzheimers Dement 2021, 17(12), 1966–1975. [Google Scholar] [CrossRef]
- Reger, M. A.; Watson, G. S.; Green, P. S.; Wilkinson, C. W.; Baker, L. D.; Cholerton, B.; Fishel, M. A.; Plymate, S. R.; Breitner, J. C.; DeGroodt, W.; Mehta, P.; Craft, S. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 2008, 70(6), 440–448. [Google Scholar] [CrossRef] [PubMed]
- Rishton, G. M.; Look, G. C.; Ni, Z. J.; Zhang, J.; Wang, Y.; Huang, Y.; Wu, X.; Izzo, N. J.; LaBarbera, K. M.; Limegrover, C. S.; Rehak, C.; Yurko, R.; Catalano, S. M. Discovery of Investigational Drug CT1812, an Antagonist of the Sigma-2 Receptor Complex for Alzheimer's Disease. ACS Med Chem Lett 2021, 12(9), 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.; Luber-Narod, J.; Styren, S. D.; Civin, W. H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol Aging 1988, 9(4), 339–349. [Google Scholar] [CrossRef] [PubMed]
- Rynearson, K. D.; Ponnusamy, M.; Prikhodko, O.; Xie, Y.; Zhang, C.; Nguyen, P.; Hug, B.; Sawa, M.; Becker, A.; Spencer, B.; Florio, J.; Mante, M.; Salehi, B.; Arias, C.; Galasko, D.; Head, B. P.; Johnson, G.; Lin, J. H.; Duddy, S. K.; Wagner, S. L. Preclinical validation of a potent gamma-secretase modulator for Alzheimer's disease prevention. J Exp Med 2021, 218(4). [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Sperling, R.; Keren, R.; Porsteinsson, A. P.; van Dyck, C. H.; Tariot, P. N.; Gilman, S.; Arnold, D.; Abushakra, S.; Hernandez, C.; Crans, G.; Liang, E.; Quinn, G.; Bairu, M.; Pastrak, A.; Cedarbaum, J. M.; Investigators, E. A. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 2011, 77(13), 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, T. B.; Savall, A. S.; Gutierrez, M. E. Z.; Pinton, S. Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural Regen Res 2017, 12(4), 549–557. [Google Scholar] [CrossRef] [PubMed]
- Saresella, M.; Calabrese, E.; Marventano, I.; Piancone, F.; Gatti, A.; Alberoni, M.; Nemni, R.; Clerici, M. Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer's disease. Brain Behav Immun 2011, 25(3), 539–547. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J. A.; Arvanitakis, Z.; Bang, W.; Bennett, D. A. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007, 69(24), 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J. A.; Arvanitakis, Z.; Leurgans, S. E.; Bennett, D. A. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 2009, 66(2), 200–208. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D. J.; Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016, 8(6), 595–608. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussiere, T.; Weinreb, P. H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O'Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M. S.; Quintero-Monzon, O.; Scannevin, R. H.; Arnold, H. M.; Sandrock, A. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 2016, 537(7618), 50–56. [Google Scholar] [CrossRef] [PubMed]
- Shcherbinin, S.; Evans, C. D.; Lu, M.; Andersen, S. W.; Pontecorvo, M. J.; Willis, B. A.; Gueorguieva, I.; Hauck, P. M.; Brooks, D. A.; Mintun, M. A.; Sims, J. R. Association of Amyloid Reduction After Donanemab Treatment With Tau Pathology and Clinical Outcomes: The TRAILBLAZER-ALZ Randomized Clinical Trial. JAMA Neurol 2022, 79(10), 1015–1024. [Google Scholar] [CrossRef]
- Shieh, J. C.; Huang, P. T.; Lin, Y. F. Alzheimer's Disease and Diabetes: Insulin Signaling as the Bridge Linking Two Pathologies. Mol Neurobiol 2020, 57(4), 1966–1977. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. S.; Chanu, M. T. Alzheimer’s disease and Aβ pathways. World Journal of Advanced Research and Reviews 2021, 12(3), 542–544. [Google Scholar] [CrossRef]
- Sobue, A.; Komine, O.; Yamanaka, K. Neuroinflammation in Alzheimer's disease: microglial signature and their relevance to disease. Inflamm Regen 2023, 43(1), 26. [Google Scholar] [CrossRef] [PubMed]
- Stowe, A. M.; Ireland, S. J.; Ortega, S. B.; Chen, D.; Huebinger, R. M.; Tarumi, T.; Harris, T. S.; Cullum, C. M.; Rosenberg, R.; Monson, N. L.; Zhang, R. Adaptive lymphocyte profiles correlate to brain Abeta burden in patients with mild cognitive impairment. J Neuroinflammation 2017, 14(1), 149. [Google Scholar] [CrossRef] [PubMed]
- Sudduth, T. L.; Greenstein, A.; Wilcock, D. M. Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Abeta in APP/PS1 mice along a different time course than anti-Abeta antibodies. J Neurosci 2013, 33(23), 9684–9692. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C. J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R. Y. K.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A.; Reyderman, L.; Berry, D. A.; Berry, S.; Gordon, R.; Kramer, L. D.; Cummings, J. L. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Abeta protofibril antibody. Alzheimers Res Ther 2021, 13(1), 80. [Google Scholar] [CrossRef]
- Tamburini, B.; Badami, G. D.; La Manna, M. P.; Shekarkar Azgomi, M.; Caccamo, N.; Dieli, F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023, 24(15). [Google Scholar] [CrossRef] [PubMed]
- Tampi, R. R.; Forester, B. P.; Agronin, M. Aducanumab: evidence from clinical trial data and controversies. Drugs Context 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Tatulian, S. A. Challenges and hopes for Alzheimer's disease. Drug Discov Today 2022, 27(4), 1027–1043. [Google Scholar] [CrossRef]
- Thakker, D. R.; Sankaranarayanan, S.; Weatherspoon, M. R.; Harrison, J.; Pierdomenico, M.; Heisel, J. M.; Thompson, L. A.; Haskell, R.; Grace, J. E.; Taylor, S. J.; Albright, C. F.; Shafer, L. L. Centrally Delivered BACE1 Inhibitor Activates Microglia, and Reverses Amyloid Pathology and Cognitive Deficit in Aged Tg2576 Mice. J Neurosci 2015, 35(17), 6931–6936. [Google Scholar] [CrossRef]
- Tonnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis 2017, 57(4), 1105–1121. [Google Scholar] [CrossRef] [PubMed]
- Tucker, S.; Moller, C.; Tegerstedt, K.; Lord, A.; Laudon, H.; Sjodahl, J.; Soderberg, L.; Spens, E.; Sahlin, C.; Waara, E. R.; Satlin, A.; Gellerfors, P.; Osswald, G.; Lannfelt, L. The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 2015, 43(2), 575–588. [Google Scholar] [CrossRef]
- Tzioras, M.; Davies, C.; Newman, A.; Jackson, R.; Spires-Jones, T. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease. Neuropathol Appl Neurobiol 2019, 45(4), 327–346. [Google Scholar] [CrossRef]
- Valera, E.; Spencer, B.; Fields, J. A.; Trinh, I.; Adame, A.; Mante, M.; Rockenstein, E.; Desplats, P.; Masliah, E. Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol Commun 2017, 5(1), 2. [Google Scholar] [CrossRef]
- van Dyck, C. H.; Swanson, C. J.; Aisen, P.; Bateman, R. J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; Froelich, L.; Katayama, S.; Sabbagh, M.; Vellas, B.; Watson, D.; Dhadda, S.; Irizarry, M.; Kramer, L. D.; Iwatsubo, T. Lecanemab in Early Alzheimer's Disease. N Engl J Med 2023, 388(1), 9–21. [Google Scholar] [CrossRef] [PubMed]
- Vijverberg, E. G. B.; Axelsen, T. M.; Bihlet, A. R.; Henriksen, K.; Weber, F.; Fuchs, K.; Harrison, J. E.; Kuhn-Wache, K.; Alexandersen, P.; Prins, N. D.; Scheltens, P. Rationale and study design of a randomized, placebo-controlled, double-blind phase 2b trial to evaluate efficacy, safety, and tolerability of an oral glutaminyl cyclase inhibitor varoglutamstat (PQ912) in study participants with MCI and mild AD-VIVIAD. Alzheimers Res Ther 2021, 13(1), 142. [Google Scholar] [CrossRef] [PubMed]
- Villemagne, V. L.; Rowe, C. C.; Barnham, K. J.; Cherny, R.; Woodward, M.; Bozinosvski, S.; Salvado, O.; Bourgeat, P.; Perez, K.; Fowler, C.; Rembach, A.; Maruff, P.; Ritchie, C.; Tanzi, R.; Masters, C. L. A randomized, exploratory molecular imaging study targeting amyloid beta with a novel 8-OH quinoline in Alzheimer's disease: The PBT2-204 IMAGINE study. Alzheimers Dement (N Y) 2017, 3(4), 622–635. [Google Scholar] [CrossRef] [PubMed]
- Vossel, K.; Ranasinghe, K. G.; Beagle, A. J.; La, A.; Ah Pook, K.; Castro, M.; Mizuiri, D.; Honma, S. M.; Venkateswaran, N.; Koestler, M.; Zhang, W.; Mucke, L.; Howell, M. J.; Possin, K. L.; Kramer, J. H.; Boxer, A. L.; Miller, B. L.; Nagarajan, S. S.; Kirsch, H. E. Effect of Levetiracetam on Cognition in Patients With Alzheimer Disease With and Without Epileptiform Activity: A Randomized Clinical Trial. JAMA Neurol 2021, 78(11), 1345–1354. [Google Scholar] [CrossRef]
- Wang, C.; Shou, Y.; Pan, J.; Du, Y.; Liu, C.; Wang, H. The relationship between cholesterol level and Alzheimer's disease-associated APP proteolysis/Abeta metabolism. Nutr Neurosci 2019, 22(7), 453–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Y.; Lee, K. C.; Pei, Z.; Khan, A.; Bakshi, K.; Burns, L. H. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging 2017, 55, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Y.; Pei, Z.; Lee, K. C.; Lopez-Brignoni, E.; Nikolov, B.; Crowley, C. A.; Marsman, M. R.; Barbier, R.; Friedmann, N.; Burns, L. H. PTI-125 Reduces Biomarkers of Alzheimer's Disease in Patients. J Prev Alzheimers Dis 2020, 7(4), 256–264. [Google Scholar] [CrossRef]
- Wang, Y. W.; Zhou, Q.; Zhang, X.; Qian, Q. Q.; Xu, J. W.; Ni, P. F.; Qian, Y. N. Correction to: Mild endoplasmic reticulum stress ameliorates lipopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. J Neuroinflammation 2020, 17(1), 353. [Google Scholar] [CrossRef]
- Wessels, A. M.; Tariot, P. N.; Zimmer, J. A.; Selzler, K. J.; Bragg, S. M.; Andersen, S. W.; Landry, J.; Krull, J. H.; Downing, A. M.; Willis, B. A.; Shcherbinin, S.; Mullen, J.; Barker, P.; Schumi, J.; Shering, C.; Matthews, B. R.; Stern, R. A.; Vellas, B.; Cohen, S.; Sims, J. R. Efficacy and Safety of Lanabecestat for Treatment of Early and Mild Alzheimer Disease: The AMARANTH and DAYBREAK-ALZ Randomized Clinical Trials. JAMA Neurol 2020, 77(2), 199–209. [Google Scholar] [CrossRef]
- World Health Organisation (WHO) The top 10 causes of death. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
- Wu, K. M.; Zhang, Y. R.; Huang, Y. Y.; Dong, Q.; Tan, L.; Yu, J. T. The role of the immune system in Alzheimer's disease. Ageing Res Rev 2021, 70, 101409. [Google Scholar] [CrossRef] [PubMed]
- Xue-Shan, Z.; Juan, P.; Qi, W.; Zhong, R.; Li-Hong, P.; Zhi-Han, T.; Zhi-Sheng, J.; Gui-Xue, W.; Lu-Shan, L. Imbalanced cholesterol metabolism in Alzheimer's disease. Clin Chim Acta 2016, 456, 107–114. [Google Scholar] [CrossRef] [PubMed]
| Drug name | Company | Mode of action and effect | Approval status |
| Aducanumab (Aduhelm) | Biogen, Neuroimmune | Eliminate aggregated Aβ plaques | Approval in progress (Green et al., 2009; Huang et al., 2023; Kim et al., 2023) |
| Lecanemab (Leqembi) | BioArctic AB, Biogen, Eisai | Reduce soluble Aβ protofibrils | Fully approved (Huang et al., 2023; Kim et al., 2023) |
| Donanemab | Eli Lilly & Co | Eliminate aggregated Aβ plaques | Application for full approval (Huang et al., 2023; Kim et al., 2023) |
| Drug name | Mode of action and effect | Trial phase status | Side effects/outcome |
| Lenalidomide | BACE1 inhibition, inflammation reduction | Ongoing phase II | Yet to be available (Decourt et al., 2017; Valera et al., 2017) |
| CT1812 | Aβ aggregation inhibition, Aβ oligomer reduction, behavioral improvement | Ongoing phase II | Yet to be available (Grundman et al., 2019; Rishton et al., 2021) |
| ALX-001 | mGluR5 modulation, Synaptic function, and behavioral enhancement | Ongoing phase I | Yet to be available (Hamilton et al., 2016) (Haas et al., 2017) |
| Buntanetap | Aβ production inhibition, Aβ generation reduction | Ongoing phase III | Yet to be available (Fang et al., 2023; Lahiri et al., 2007) |
| GV-971 | Aβ dissociation, Aβ, plaque burden reduction | Ongoing phase II | Yet to be available (Cumbo & Ligori, 2010; Vossel et al., 2021) |
| Nasal insulin | Aβ toxicity modulation, Memory improvement | Ongoing (phase II/III | Yet to be available (Chapman et al., 2018; Craft et al., 2012; Reger et al., 2008) |
| Simufilam | Filament modulation, Amyloid, tau deposition, neuroinflammation reduction | Ongoing phase III | Yet to be available (Wang et al., 2017; H. Y. Wang et al., 2020) |
| Varoglutamstat | Glutaminyl cyclase inhibition, Amyloid pathology and pAβ reduction | Ongoing phase II | Yet to be available (Hoffmann et al., 2021; Vijverberg et al., 2021) |
| Aducanumab | Passive immunization, plaque clearance | Approved and ongoing phase III | Application for full approval (Green et al., 2009; Huang et al., 2023) |
| Lecanemab | Passive immunization, brain, and CSF Aβ protofibril reduction | Approved and ongoing phase III | Approved (Huang et al., 2023; Kim et al., 2023) |
| Donanemab | Passive immunization, plaque clearance | Approved and ongoing phase III | Approved (Ahn et al., 2020; Huang et al., 2023; Kim et al., 2023) |
| Thalidomide | BACE1 inhibition, Amyloid pathology, and gliosis reduction | Completed phase III | Adverse consequences (Decourt et al., 2017) |
| CHF5074 | γ-Secretase modulation. Aβ reduction | Completed phase II | Decision unavailable (Imbimbo et al., 2013) |
| PBT2 | RAGE inhibition, Spine density and synaptic protein level improvement | Completed phase II | Lack of effectiveness (Villemagne et al., 2017) |
| Contraloid | Aβ aggregation inhibition, Amyloid deposition reduction | Completed phase I | Yet to be available (Kutzsche et al., 2020) |
| Acitretin | Aβ production inhibition, Aβ reduction | Completed phase II | Yet to be available (Endres et al., 2014; Holthoewer et al., 2012) |
| Bexarotene | Anti-ApoE, Aβ reduction, cognitive deficit improvement | Discontinued phase II | Adverse outcomes/ lack of efficiency (LaClair et al., 2013; O'Hare et al., 2016) |
| AN-1792 | Active immunization, Amyloid plaque formation reduction | Discontinued phase II | Adverse events(Nicoll et al., 2003 |
| ACC-001 | Active immunization, Amyloid plaque formation prevention | Discontinued phase II | Adverse incidents (Maia & Sousa, 2019) |
| CAD106 | Active immunization, Amyloid accumulation in brain reduction | Discontinued phase II | No results available (May et al., 2015) |
| Ponezumab | Passive immunization, Cerebral blood vessel amyloid deposition reduction | Discontinued phase II | Lack of efficiency (Wessels et al., 2020) |
| Gammagard | Passive immunization, Aβ reduction | Discontinued phase II | Lack of efficiency (Bullich et al., 2022; Sudduth et al., 2013) |
| Bapineuzumab | Passive immunization, Plaque burden reduction | Discontinued phase II | Lack of efficiency (Henley et al., 2019) |
| Crenezumab | Passive immunization, Localized to Aβ oligomers | Discontinued phase II | Lack of efficiency (Doody et al., 2013) |
| Gantenerumab | Passive immunization, | Ongoing phase III | Yet to be available (Coric et al., 2015; Coric et al., 2012) |
| Atabecestat | BACE1 inhibition, reverse amyloid pathology and cognitive deficit | Discontinued phase II/III | Clinical worsening(Henley et al., 2019),(Thakker et al., 2015) |
| Elenbecestat | BACE1 inhibition, Brain, CSF, and plasma Aβ reduction | Discontinued phase III | Unfavorable risk-benefit ratio (Bullich et al., 2022) |
| LY2886721 | BACE1 inhibition, Dose-dependent Aβ reduction | Discontinued phase II | Adverse consequence (May et al., 2015) |
| Lanabecestat | BACE1 inhibition, Aβ reduction | Discontinued phase III | Lack of effectiveness (Wessels et al., 2020) |
| PF-06751979 | BACE1 inhibition, CSF Aβ42 reduction | Discontinued phase I | Pfizer ended R&D in neurology (O'Neill et al., 2018; Qiu et al., 2019) |
| RG7129 | BACE1 inhibition, Aβ reduction | Discontinued phase I | Adverse incidents (Jacobsen et al., 2014; Maia & Sousa, 2019) |
| Verubecestat | Dose dependent Aβ40,42 reduction | Discontinued phase III | Clinical worsening (Egan et al., 2018; Egan, Kost, et al., 2019; Egan, Mukai, et al., 2019) |
| Avagacestat | γ-Secretase inhibition, CSF Aβ reduction | Discontinued phase II | Clinical worsening/adverse events (Coric et al., 2015; Coric et al., 2012) |
| PF-06648671 | γ-Secretase inhibition, Brain Aβ42 reduction | Discontinued phase I | Pfizer ended.R&D in neurology(Ahn et al., 2020; Rynearson et al., 2021) |
| Semagacestat | γ-Secretase inhibition, Soluble Aβ and plaque reduction | Discontinuedphase II | Clinical worsening/adverse events (Doody et al., 2013) |
| Azeliragon | γ-Secretase modulation, Aβ load reduction, behavioral improvement | Discontinued phase III | Lack of effectiveness (Burstein et al., 2018) |
| Tarenflurbil | γ-Secretase modulation, Aβ reduction | Discontinued phase III | Lack of effectiveness (Green et al., 2009) |
| Ibuprofen | γ-Secretase modulation, Aβ reduction | Discontinued phase II | Lack of effectiveness (Pasqualetti et al., 2009) |
| Clioquinol | Aβ aggregation inhibition, Amyloid deposition reduction | Discontinued phase III | Toxic contaminant in manufacturing process (Bareggi & Cornelli, 2012; Cherny et al., 2001) |
| ELND005 | Aβ aggregation inhibition, Amyloid pathology reduction, learning deficit restored | Discontinued phase II | Lack of effectiveness (Salloway et al., 2011) |
| Tramiprosate | Aβ aggregation inhibition, Aβ40 reduction | Discontinued phase III | Lack of effectiveness (Abushakra et al., 2016; Manzano et al., 2020) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
