Submitted:
06 February 2025
Posted:
07 February 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Moss Material
2.2. Stratospheric Missions
2.3. Imaging
2.4. Statistical Analysis
3. Results
3.1. Environmental Parameters in the Stratosphere
3.2. Cell Size and Morphology
3.3. Chlorophyll Autofluorescence
4. Discussion
Acknowledgments
References
- Jönsson, K.I. , Rabbow E., Schill R.O., Harms- Ringdahl M. and Rettberg P. Tardigrades survive exposure to space in low Earth orbit. Current Biology 2008, 18, R729–R731. [Google Scholar] [CrossRef] [PubMed]
- Sancho, L.G. , de la Torre R., Horneck G., Ascaso C., de Los Rios A., Pintado, Wierchos J. and Schuster M. Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology 2007, 7, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Cottin, H. , Guan Y.Y., Noblet A., Poch O., Saiagh K., Cloix M., Macari F., Jérome M., Coll P., Raulin F., Stalport F., Szopa C. Bertrand M., Chabin A., Westall F., Chaput D. and Demets R. The PROCESS Experiment: An astrochemistry laboratory for solid and gaseous organic samples in low-Earth Orbit. Astrobiology 2012, 12, 412–425. [Google Scholar] [PubMed]
- Kranner, I. , Beckett R., Hochman A. and Nash T.H.III. Dessication-tolerance in lichens: A review. The Bryologist 2008, 111, 576–593. [Google Scholar] [CrossRef]
- Hengherr, S. , Heyer A. G., Köhler H. R. and Schill R. O. Trehalose and anhydrobiosis in tardigrades: evidence for divergence in response to dehydration. FEBS Journal 2008, 275, 281–288. [Google Scholar] [CrossRef]
- Alpert, P. The limits and frontiers of desiccation tolerant life. Integrative and Comparative Biology 2005, 45, 685–695. [Google Scholar] [CrossRef]
- Onofri S, de la Torre R, de Vera J. P., Ott S, Zucconi L, Selbmann L, Scalzi G, Vankateswaran K.J., Rabbow E, Sánchez Iñigo F.J. and Horneck G Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 2012, 12, 508–516. [Google Scholar] [CrossRef]
- Baqué, M. , Scalzi G., Rabbow E., Rettberg P. and Billi D. Biofilm and planktonic lifestyles differently support the resistance of the desert Cyanobacterium Choococcidiopsis under space and Martian simulations. Origins of Life and Evolution of the Biosphere 2013, 43, 377–389. [Google Scholar] [CrossRef]
- Farrant, J.M. (2007). Mechanisms of desiccation tolerance in angiosperm resurrection plants. In Plant desiccation Tolerance, edited by Jenks, M.A. and Wood, A.J. Blackwell Publishing. pp. 51–90.
- Proctor, M.C.F. , Oliver M.J., Wood A.J., Alpert P., Stark L.R., Cleavitt N.L. and Mishler B.D. Dessication-tolerance in bryophytes: a review. The Bryologist 2007, 110, 595–621. [Google Scholar] [CrossRef]
- Oliver, M.J. , Velten J. and Mishler B.D. Desiccation tolerance in bryophytes: A reflection of the primitive strategy for plant survival in dehydrating habitats? Integrative and Comparative Biology 2005, 45, 788–799. [Google Scholar]
- Proctor, M.C.F. and Pence, V. C. (2002). Vegetative Tissues: Bryophytes, vascular resurrection plants, and vegetative propagules. In Desiccation and survival in plants: Drying without dying, edited by Black, M. and Pritchard, H.W., CABI Publishing,, pp. 207–237.
- Turnbull J., D. , Leslie S. J. and Robinson S. A. Desiccation protects Antarctic mosses from ultraviolet-B induced DNA damage. Functional Plant Biology 2009, 36, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 1977, 982, 1169–1194. [Google Scholar] [CrossRef]
- Crum H. (1983). Mosses of the Great Lakes Forest. University of Michigan Press, Ann Arbor, MI, 417 pp.
- P. Alpert and M.J. Oliver. (2002). Drying without dying. In Desiccation and Survival in Plants: Drying without Dying, edited by M. Black and H. W. Pritchard CABI Publishing., pp. 1–43.
- La Farge, C. , Williams K.H. and England J.H. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environmemts. Proceedings of the National Academy of Sciences 2013, 110, 9839–9844. [Google Scholar] [CrossRef] [PubMed]
- Kern, V.D. and Sack F.D., Irradiance- dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta 1999, 209, 299–307. [Google Scholar] [CrossRef]
- Paul, A.-L. , Zupanska, A.K., Ostrow, D.T., Zhang, Y., Sun, Y., Li, J.L., Shanker, S., Farmerie, W.G., Amalfitano, C.E. and Ferl, R.J. Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 2012, 12, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M. , Oono Y., Gusev O., Matsumoto T., Yazawa T., Levinskikh M.A., Sychev V.N., Bingham G.E., Wheeler R. and Hummerick M. Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biology 2014, 14, 4. [Google Scholar] [CrossRef]
- Ferl, R.J. , Koh J., Denison F. and Paul A.-L. Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology 2015, 15, 32–56. [Google Scholar] [CrossRef]
- Wang, X.Q. , Yang P.F., Liu Z., Liu W.Z., Hu Y., Chen H., Kuang T.Y., Pei Z.M., Shen S.H. and He Y.K. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiology 2009, 149, 1739–1750. [Google Scholar] [CrossRef]
- Wood, A.J. The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. The Bryologist 2007, 110, 163–177. [Google Scholar] [CrossRef]
- Schulze, K. , López D.A., Tillich U.M. and Frohme M. A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Technology 2011, 11, 118. [Google Scholar]
- R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.R-project.org/.
- Towill, L.E. and Mazur P. Osmotic shrinkage as a factor in freezing injury in plant tissue cultures. Plant physiology 1976, 57, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M. Ide H., Price W.S., Arata Y., Nakamura T. and Kishimoto T. (2009). Freezing behaviours in plant tissues: visualization using NMR micro-imaging and biochemical regulatory factors involved. In Plant Cold Hardiness: From the Laboratory to the Field, edited by Gusta, L., Wisniewski, M. and Tanino, K., CAB International., pp. 19–28.
- Minami, A. Nagao M., Ikegami K., Koshiba T., Arakawa K., Fujikawa S. and Takezawa D. Cold acclimation in bryophytes: low-temperature- induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 2005, 220, 414–423. [Google Scholar] [PubMed]
- Hui, R. , Li X., Zhao R., Liu L., Gao Y. and Wei Y. UV-B radiation suppresses chlorophyll fluorescence, photosynthetic pigment and antioxidant systems of two key species in soil crusts from the Tengger Desert, China. Journal of Arid Environments 2015, 113, 6–15. [Google Scholar] [CrossRef]
- Bakken, S. Effects of nitrogen supply and irradiance on growth and nitrogen status in the moss Dicranum majus from differently polluted areas. Journal of Bryology 1995, 18, 707–721. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
