Submitted:
19 February 2025
Posted:
20 February 2025
You are already at the latest version
Abstract
In the Hubble sphere, we assume that the wavelength of pure energy spreads out in all directions. The maximum wavelength in the Hubble sphere is then the circumference of the Hubble sphere. We assume the minimum wavelength occurs in a Planck mass black hole, which is given by 4πRs,p = 8πlp. Here, we build further on the geometric mean CMB approach by Haug and Tatum and conclude that the CMB temperature is simply given as: Tcmb =√TminTmax, which is the geometric mean of the minimum and maximum physically possible temperatures in the Hubble sphere. This is again means the CMB temperature simply is the geometric mean of the Hawking temperature of the Hubble sphere (in black hole cosmology) and the Hawking temperature of the Planck mass black hole, se we have also Tcmb = THaw,HTHaw,p.
Keywords:
1. Introduction
“The present theory is, however, unable to predict the value of T at . It is therefore a free parameter in SC (Standard Cosmology).”
2. The CMB Temperature as a Geometric Mean of the Minimum and Maximum Temperature in the Hubble Sphere
“Observations with the COBE satellite have demonstrated that the CMB corresponds to a nearly perfect black body characterized by a temperature at , which is measured with very high accuracy, ."
3. Conclusion
References
- J. V. Narlikar and T. Padmanabhan. Standard cosmology and alternatives: A critical appraisal. Annual Review of Astronomy and Astrophysics,, 39:211, 1979. URL https://doi:10.1146/annurev.astro.39.
- D. J. Fixsen and et. al. The temperature of the cosmic microwave background at 10 Ghz. The Astrophysical Journal, 612:86, 2004. URL . [CrossRef]
- D. J. Fixsen. The temperature of the cosmic microwave background. The Astrophysical Journal, 707:916, 2009. URL . [CrossRef]
- P. Noterdaeme, P. Petitjean, R. Srianand, C . Ledoux, and S. López. The evolution of the cosmic microwave background temperature. Astronomy and Astrophysics, 526, 2011. URL . [CrossRef]
- S. Dhal and R. K. Paul. Investigation on CMB monopole and dipole using blackbody radiation inversion. Scientific Reports, 13:3316, 2023. URL . [CrossRef]
- R. K. Pathria. The universe as a black hole. Nature, 240:298, 1972. URL . [CrossRef]
- W. M. Stuckey. The observable universe inside a black hole. American Journal of Physics, 62:788, 1994. URL . [CrossRef]
- P. Christillin. The Machian origin of linear inertial forces from our gravitationally radiating black hole universe. The European Physical Journal Plus, 129:175, 2014. URL . [CrossRef]
- T. X. Zhang and C. Frederick. Acceleration of black hole universe. Astrophysics and Space Science, 349:567, 2014. URL . [CrossRef]
- N. Popławski. The universe in a black hole in Einstein–Cartan gravity. The Astrophysical Journal, 832:96, 2016. URL . [CrossRef]
- T. X. Zhang. The principles and laws of black hole universe. Journal of Modern Physics, 9:1838, 2018. URL . [CrossRef]
- D. A. Easson and R. H. Brandenberger. Universe generation from black hole interiors. Journal of High Energy Physics, 2001, 2001. URL . [CrossRef]
- E. Gaztanaga. The black hole universe, part i. Symmetry, 2022:1849, 2022. URL . [CrossRef]
- Z. Roupas. Detectable universes inside regular black holes. The European Physical Journal C, 82:255, 2022. URL . [CrossRef]
- E. Siegel. Are we living in a baby universe that looks like a black hole to outsiders? Hard Science, Big Think, January 27, 2022. URL https://bigthink.com/hard-science/baby-universes-black-holes-dark-matter/.
- C. H. Lineweaver and V. M. Patel. All objects and some questions. American Journal of Physics, 91(819), 2023. URL . [CrossRef]
- F. Melia. A comparison of the Rh = ct and λ-cdm cosmologies using the cosmic distance duality relation. Monthly Notices of the Royal Astronomical Society, 143:4855, 2018. URL . [CrossRef]
- M. V. John. Rh = ct and the eternal coasting cosmological model. Monthly Notices of the Royal Astronomical Society, 484, 2019. URL . [CrossRef]
- F. Melia. Thermodynamics of the Rh = ct universe: a simplification of cosmic entropye. European Journal of Physics C, 81:234, 2021. URL . [CrossRef]
- F. Melia. Model selection with baryonic acoustic oscillations in the Lyman-α forest. European Physics Letters, 143:59004, 2023. URL . [CrossRef]
- F. Melia. Strong observational support for the Rh = ct timeline in the early universe. Physics of the Dark Universe, 46:101587, 2024. URL . [CrossRef]
- E. G. Haug and E. T. Tatum. Solving the Hubble tension using the PantheonPlusSH0ES supernova database. Accepted and forthcoming Journal of Applied Mathematics and Physics, vol 13, no. 2, 2025.
- E. G. Haug and E. T. Tatum. Friedmann type equations in thermodynamical form lead to much tighter constraints on the energy density of the universe. https://www.preprints.org/manuscript/202403.1241/v1, 2024. URL https://www.preprints.org/manuscript/202403.1241/v1.
- R. F. L. Henderson. The theorem of the arithmetic and geometric means and its application to a problem in gas dynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP, 16:788, 1965. URL . [CrossRef]
- L. Zhang, L. Y. Gong, and P. Q. Tong. The geometric mean density of states and its application to one-dimensional nonuniform systems. The European Physical Journal B, 80:485, 2011. URL . [CrossRef]
- S. Yamagami. Geometric mean of states and transition amplitudes. Letters in Mathematical Physic, 84:123, 2008. URL . [CrossRef]
- M. Kocic. Geometric mean of bimetric spacetimes. Classical and Quantum Gravity, 38:075023, 2021. URL . [CrossRef]
- N. Lümmen. Termodynamikk, Kort og Godt. Universitetsforlaget, Oslo Norway, 2020.
- M. Bucher. Maximum-power efficiency of a Carnot engine. International Journal of Engineering, 12:47, 1996. URL https://www.ijee.ie/articles/Vol12-1/12-1-08.PDF.
- R. S. Johal. Pythagorean means and Carnot machines. Resonance, 22:1193, 2017. URL . [CrossRef]
- E. G. Haug and E. T. Tatum. The hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature. Journal of Applied Mathematics and Physics, 12:3328, 2024. URL . [CrossRef]
- M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899. URL https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up.
- M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation" (1959) Dover, 1906.
- E. T. Tatum, U. V. S. Seshavatharam, and S. Lakshminarayana. The basics of flat space cosmology. International Journal of Astronomy and Astrophysics, 5:116, 2015. URL http://dx.doi.org/10.4236/ijaa.2015.52015.
- E. G. Haug. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, Nature-Springer, 63(57), 2024. URL . [CrossRef]
- S. Muller et. al . A precise and accurate determination of the cosmic microwave background temperature at z = 0.89. Astronomy & Astrophysics, 551, 2013. URL . [CrossRef]
- E. G. Haug. Geometric mean cosmology predicts the CMB temperature now and in past epochs. Cambridge Engage, Physics and Astronomy, preprint, 2025. URL https://www.cambridge.org/engage/coe/article-details/67a2866381d2151a022e25e1.
- S. Hawking. Black hole explosions. Nature, 248, 1974. URL . [CrossRef]
- A. Friedmann. Über die krüng des raumes. Zeitschrift für Physik, 10:377, 1922. URL . [CrossRef]
- I. de Martino et. al. Measuring the redshift dependence of the cosmic microwave background monopole temperature with Planck data. The Astrophysical Journal, 757:144, 2012. URL . [CrossRef]
- L. Yunyang. Constraining cosmic microwave background temperature evolution with Sunyaev–Zel’dovich galaxy clusters from the ATACAMA cosmology telescope. The Astrophysical Journal, 922:136, 2021. URL . [CrossRef]
- D.A. Riechers, A. Weiss, and F. et al. Walter. Microwave background temperature at a redshift of 6.34 from h20 absorption. Nature, 602:58, 2022. URL . [CrossRef]
- S. Hossenfelder. Can we measure structures to a precision better than the Planck length? Classical and Quantum Gravity, 29:115011, 2012. URL . [CrossRef]
- S. Hossenfelder. Minimal length scale scenarios for quantum gravity. Living Reviews in Relativity, 16:2, 2013. URL . [CrossRef]
- S. L. Adler. Six easy roads to the Planck scale. American Journal of Physics, 78:925, 2010. URL . [CrossRef]
- E. G. Haug. Quantized Newton and general relativity theory. Qeios, 2023. URL . [CrossRef]
- E. T. Tatum, E. G. Haug, and S. Wojnow. Predicting high precision Hubble constant determinations based upon a new theoretical relationship between CMB temperature and H0. Journal of Modern Physics, 15:1708, 2024. URL . [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
