Submitted:
08 March 2025
Posted:
11 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Collection of Soil Samples
2.2. Isolation and Identification of Fungi
2.3. Maintenance of Fungal Cultures
2.4. Qualitative Screening of Arginase-Producing Fungi
2.5. Arginase Assay
2.6. Molecular Identification of the Hyperactive Producer Strain by ITS Analysis
2.7. Optimization of Arginase Productivity
2.7.1. Screening of Arginase Production Under Submerged Fermentation, Static and Shaking Incubation Conditions
2.7.2. Effect of Different Temperatures on Arginase Production
2.7.3. Effect of Initial pH Values on Arginase Production
2.7.4. Effect of Different Carbon Sources on Arginase Production
2.7.5. Effect of Different Nitrogen Sources on Arginase Production
2.7.6. Effect of Different Additional Elements on Arginase Production
2.7.7. Effect of Different Amino Acids on Arginase Production
2.8. Purification of Arginase
2.9. SDS-PAGE Analysis of Purified Arginase
2.10. Determination of Protein Content
2.11. Characterization of Purified Arginase Activity
2.11.1. Optimum Reaction Time of Purified Arginase
2.11.2. Effect of pH and pH Stability on the Activity of Purified Arginase
2.11.3. Effect of Temperature and Thermos-Stability on the Activity of Purified Arginase
2.11.4. Effect of Substrate Concentration on the Activity of Purified Arginase
2.11.5. Effect of Different Metallic Cations on the Activity of Purified Arginase
2.11.6. Effect of Different Concentrations of EDTA on the Activity of Purified Arginase
2.11.7. Effect of Enzyme Concentration on the Activity of Purified Arginase
2.12. In Vitro Anticancer Assay of Arginase
2.12.1. Cell Culture
2.12.2. Cytotoxicity Assay
2.12.3. Detection of the Apoptotic Effect of Arginase on Tested Human Cancer Cells Using a Flow Cytometry Assay
3. Results
3.1. Collection of Soil Samples, Isolation and Identification of Arginase-Producing Fungi
3.2. Qualitative Screening of Arginase-Producing Fungi
3.3. Quantitative Screening of Arginase Producing Fungi
3.4. Molecular Identification of the Hyperactive Producer Strain by ITS Analysis
3.5. Optimization of Arginase Productivity
3.5.1. Screening of the Most Potent Fungal Isolates for Arginase Production Under Submerged Fermentation, Static and Shaking Incubation Conditions
3.5.2. Effect of Different Temperatures and Initial pH Values on Arginase Production
3.5.3. Effect of Different Carbon Sources on Arginase Production
3.5.4. Effect of Concentration of the Best Carbon Source on Arginase Production
3.5.5. Effect of Different Nitrogen Sources on Arginase Production
3.5.6. Effect of Concentration of the Best Nitrogen Source on Arginase Production
3.5.7. Effect of Different Additional Elements on Arginase Production
3.5.8. Effect of Different Concentrations of the Most Suitable Additional Element on Arginase Production
3.5.9. Effect of Different Amino Acids on Arginase Production
3.5.10. Effect of Different Concentrations of the Most Suitable Amino Acid on Arginase Production
3.6. Purification of Arginase
3.7. SDS-PAGE Analysis of Purified Enzyme
3.8. Characterization of Purified Arginase Activity
3.8.1. Optimum Reaction Time of Purified Arginase Activity
3.8.2. Effect of pH and pH Stability on the Activity of Purified Arginase
3.8.3. Effect of Temperature and Thermo-Stability on the Activity of Purified Arginase
3.8.4. Effect of Substrate Concentration on the Activity of Purified Arginase
3.8.5. Effect of Different Metallic Cations on the Activity of Purified Arginase
3.8.6. Effect of Different Concentrations of EDTA on the Activity of Purified Arginase
3.8.7. Effect of Enzyme Concentration on the Activity of Purified Arginase
3.9. In Vitro Anticancer Effect of Arginase
3.9.1. Cytotoxicity Assay of Arginase Using MTT Method
3.9.2. Flow Cytometry Analysis of Fungal Arginase Against A431 Cancer Cells
4. Discussion
5. Conclusion
References
- Shirazian, P.; Asad, S.; Amoozegar, M.A. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI J. 2016, 18, 268–279. [Google Scholar]
- Nadaf, P.D.; Kulkarni, A.G.; Vedamurthy, A.B. Isolation, screening and characterization of L-arginase producing soil bacteria. Int. J. Pharm. Sci. Res. 2019, 10, 3440–3444. [Google Scholar] [CrossRef]
- Sidkey, N.M.; Abo Elsoud, M.M.; Elnemr, W.; Elhateir, M.M. Anticancer Glutaminase Production and Optimization Using Halotolerant Aspergillus flavus CZCU-9, F1H. Al-Azhar Bulletin of Sci. 2019, 30, 1–9. [Google Scholar]
- Awad, M.F.; El-Shenawy, F.S.; El-Gendy, M.M.A.A.; El-Bondkly, E.A.M. Purification, characterization, and anticancer and antioxidant activities of L-glutaminase from Aspergillus versicolor Faesay4. Int. Microbiol. 2021, 24, 169–181. [Google Scholar] [CrossRef]
- Chen, H.; McGowan, E.M.; Ren, N.; Lal, S.; Nassif, N.; Shad-Kaneez, F.; Qu, X.; Lin, Y. Nattokinase: A promising alternative in prevention and treatment of cardiovascular diseases. Biomark. Insigh. 2018, 13, 1177271918785130. [Google Scholar] [CrossRef] [PubMed]
- Radadiya, A.; Zhu, W.; Coricello, A.; Alcaro, S.; Richards, N.G.J. Improving the treatment of acute lymphoblastic leukemia. Biochem. 2020, 59, 3193–3200. [Google Scholar] [CrossRef]
- El-Sayed, A.S.; Shindia, A.A.; Diab, A.A.; Rady, A.M. Purification and immobilization of L-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch. Pharm. Res. 2014. [Google Scholar] [CrossRef]
- Dzik, J.M. Evolutionary roots of arginase expression and regulation. Front Immunol. 2014, 5, 544. [Google Scholar] [CrossRef] [PubMed]
- Marathe, S.; Yu, Y.G.; Turner, G.E.; Palmier, C.; Weiss, R.L. Multiple forms of arginase are differentially expressed from a single locus in Neurospora crassa. J. Biol. Chem. 1998, 273, 29776–29785. [Google Scholar] [CrossRef]
- Wagemaker, M.J.; Welboren, W.; van der Drift, C.; Jetten, M.S.; Van Griensven, L.J.; Op den Camp, H.J. The ornithine cycle enzyme arginase from Agaricus bisporus and its role in urea accumulation in fruit bodies. Biochim. Biophys. Acta. 2005, 1681, 107–115. [Google Scholar] [CrossRef]
- Olszewska, A.; Król, K.; Weglenski, P.; Dzikowska, A. Arginine catabolism in Aspergillus nidulans is regulated by the rrmA gene coding for the RNA-binding protein. Fungal Genet Biol. 2007, 44, 1285–1297. [Google Scholar] [CrossRef] [PubMed]
- Keni, S.; Punekar, N.S. Contribution of arginase to manganese metabolism of Aspergillus niger. Biometals. 2016, 29, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Parmar, F.A.; Patel, J.N.; Upasani, V.N. Screening of microorganisms for production of therapeutic enzymes. Screening 2021, 3, 39. [Google Scholar]
- Borkovich, K.A.; Weiss, R.L. Relationship between two major immunoreactive forms of arginase in Neurospora crassa. J. Bacteriol. 1987, 169, 5510–5517. [Google Scholar] [CrossRef]
- Potenza, M.A.; Nacci, C.; Mitolo-Chieppa, D. Immunoregulatory effects of L-arginine and therapeutical implications. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2001, 1, 67–77. [Google Scholar] [CrossRef]
- Henriques, C.F.; Fernandes, R.; Barreto, F.; Miranda, R.; Aguiar, T.C. Hyperargininemia: A Rare Diagnosis in Adulthood. Eur. J. Case Rep. Int. Med. 2024, 11, 004379. [Google Scholar] [CrossRef]
- Maisonneuve, C.; Tsang, D.K.L.; Foerster, E.G.; Robert, L.M.; Mukherjee, T.; Prescott, D.; Tattoli, I.; Lemire, P.; Winer, D.A.; Winer, S.; Streutker, C.J.; Geddes, K.; Cadwell, K.; Ferrero, R.L.; Martin, A.; Girardin, S.E.; Philpott, D.J. Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells. Cell Rep. 2021, 34, 108677. [Google Scholar] [CrossRef]
- Atta, I.S. Efficacy of expressions of Arg-1, Hep Par-1, and CK19 in the diagnosis of the primary hepatocellular carcinoma subtypes and exclusion of the metastases. Histol. Histopathol. 2021, 36, 981–993. [Google Scholar] [CrossRef]
- You, J.; Chen, W.; Chen, J.; Zheng, Q.; Dong, J.; Zhu, Y. The Oncogenic Role of ARG1 in Progression and Metastasis of Hepatocellular Carcinoma. Biomed. Res. Int. 2018, 2018, 2109865, Erratum in: Biomed. Res. Int. 2019, 2019, 6212386. [Google Scholar] [CrossRef]
- Matos, A.; Carvalho, M.; Bicho, M.; Ribeiro, R. Arginine and Arginases Modulate Metabolism, Tumor Microenvironment and Prostate Cancer Progression. Nutrients. 2021, 13, 4503. [Google Scholar] [CrossRef]
- Azambuja, J.H.; Ludwig, N.; Yerneni, S.S.; Braganhol, E.; Whiteside, T.L. Arginase-1+ Exosomes from Reprogrammed Macrophages Promote Glioblastoma Progression. Int. J. Mol. Sci. 2020, 21, 3990. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Zhang, S.Q.; Qiu, X.G.; Zhang, S.J.; Zheng, S.H.; Zhang, D.H. Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214. Int. J. Oncol. 2017, 50, 708–716. [Google Scholar] [CrossRef]
- Hackett, C.S.; Quigley, D.A.; Wong, R.A.; Chen, J.; Cheng, C.; Song, Y.K.; Wei, J.S.; Pawlikowska, L.; Bao, Y.; Goldenberg, D.D.; Nguyen, K.; Gustafson, W.C.; Rallapalli, S.K.; Cho, Y.J.; Cook, J.M.; Kozlov, S.; Mao, J.H.; Van Dyke, T.; Kwok, P.Y.; Khan, J.; Balmain, A.; Fan, Q.; Weiss, W.A. Expression quantitative trait loci and receptor pharmacology implicate Arg1 and the GABA-A receptor as therapeutic targets in neuroblastoma. Cell Rep. 2014, 9, 1034–1046. [Google Scholar] [CrossRef]
- Yu, Y.; Ladeiras, D.; Xiong, Y.; Boligan, K.F.; Liang, X.; von Gunten, S.; Hunger, R.E.; Ming, X.F.; Yang, Z. Arginase-II promotes melanoma migration and adhesion through enhancing hydrogen peroxide production and STAT3 signaling. J. Cell Physiol. 2020, 235, 9997–10011. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Ghosh, S.K. Modulation of L-Arginine-Arginase Metabolic Pathway Enzymes: Immunocytochemistry and mRNA Expression in Peripheral Blood and Tissue Levels in Head and Neck Squamous Cell Carcinomas in North-East India. Asian Pac. J. Cancer Prev. 2015, 16, 7031–7038. [Google Scholar] [CrossRef] [PubMed]
- Giatromanolaki, A.; Harris, A.L.; Koukourakis, M.I. The prognostic and therapeutic implications of distinct patterns of argininosuccinate synthase 1 (ASS1) and arginase-2 (ARG2) expression by cancer cells and tumor stroma in non-small-cell lung cancer. Cancer Metab. 2021, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Hassabo, A.A.; Abdelraof, M.; Allam, R.M. L-arginase from Streptomyces diastaticus MAM5 as a potential therapeutic agent in breast cancer: Purification, characterization, G1 phase arrest and autophagy induction. Int. J. Biol. Macromol. 2023, 224, 634–645. [Google Scholar] [CrossRef]
- Selim, M.S.; Mounier, M.M.; Abdelhamid, S.A.; Hamed, A.A.; Abo Elsoud, M.M.; Mohamed, S.S. Characterization, modeling, and anticancer activity of L-arginase production from marine Bacillus licheniformis OF2. BMC Biotechnol. 2024, 24, 6. [Google Scholar] [CrossRef]
- Mussai, F.; De Santo, C.; Abu-Dayyeh, I.; Booth, S.; Quek, L.; McEwen-Smith, R.M.; Qureshi, A.; Dazzi, F.; Vyas, P.; Cerundolo, V. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood. 2013, 122, 749–758. [Google Scholar] [CrossRef]
- Abdel Wahed, A.S.A.H.; Amer, M.A.M.; Abou Mohamed, N.M.; Mobasher, M.I. Serum arginase-2 level in patients with vasculogenic erectile dysfunction. Al-Azhar Med. J. 2016, 45, 805–812. [Google Scholar]
- Abdel Wahed, A.S.A.H.; Amer, M.A.M.; Abou Mohamed, N.M.; Mobasher, M.I.; Mamdouh, H.; GamalEl Din, S.F.; ElSheemy, M.S. Serum Arginase II level can be a novel indicator for erectile dysfunction in patients with vasculogenic erectile dysfunction: a comparative study. Int. Urol. Nephrol. 2018, 50, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.A.; Eldowik, Y.M. The role of glypican 3, arginase 1, and CD34 in differentiation between benign and malignant primary hepatic lesions. Al-Azhar Assiut Med. J. 2022, 20, 239–244. [Google Scholar] [CrossRef]
- Niu, F.; Yu, Y.; Li, Z.; Ren, Y.; Li, Z.; Ye, Q.; Liu, P.; Ji, C.; Qian, L.; Xiong, Y. Arginase: An emerging and promising therapeutic target for cancer treatment. Biomed. Pharmacother. 2022, 149, 112840. [Google Scholar] [CrossRef]
- Zhang, Y.; Chung, S.F.; Tam, S.Y.; Leung, Y.C.; Guan, X. Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Lett. 2021, 502, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I.; Hocking, A.D. In Fungi and Food Spoilage. Springer Nature Switzerland AG. Part of Springer Nature (524 pages). 2009. [CrossRef]
- Stanbury, P.; Whitaker, A.; Hall, S.J. Principles of Fermentation Technology, 2nd ed.; Elsevier, 2013; Volume 42, pp. 97–101. [Google Scholar]
- Bajpai, B.; Patil, S. Induction of tannin acyl hydrolase (EC 3.1.1.20) activity in some members of fungi imperfecti. Enz. Microb. Technol. [CrossRef]
- Zhang, T.; Guo, Y.; Zhang, H.; Mu, W.; Miao, M.; Jiang, B. Arginase from Bacillus thuringiensis SK 20.001: Purification, characteristics, and implications for l-ornithine biosynthesis. Process Biochem. 2013, 48, 663–668. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wu, C.; Lu, D.; Guo, G.; Mao, X.; Zhang, Y.; Wang, D.C.; Li, D.; Zou, Q. Expression, purification and characterization of arginase from Helicobacter pylori in its apo form. PLoS One. 2011, 6, e26205. [Google Scholar] [CrossRef]
- Chinard, F.P. Photometric estimation of proline and ornithine. J. Biol. Chem. 1952, 199, 91–95. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- White, T.J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A guide to methods and applications; Academic Press, Inc., 1990. [Google Scholar]
- Amarowicz, R.; Naczk, M. Gel filtration of condensed tannins and phenolic acids of canola hulls on Sephadex G-25 and G-50. Polish J. Food Nutr. Sci. 2006, 15, 415–418. [Google Scholar]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.H.H.; Mohamed, M.F.A.; Allam, R.M.; Nafady, A.; Mohamed, S.K.; Gouda, A.E.; Beshr, E.A.M. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg. Chem. 2022, 129, 106171. [Google Scholar] [CrossRef]
- Alaufi, O.M.; Noorwali, A.; Zahran, F.; Al-Abd, A.M.; Al-Attas, S. Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Sci. Rep. 2017, 7, 13131.–content. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Al-Abd, A.M.; El-Halawany, A.M.; Abdallah, H.M.; Ibrahim, S.R.M. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol. 2017, 198, 302–312. [Google Scholar] [CrossRef]
- Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A.; AJabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep. 2018, 8, 11674. [Google Scholar] [CrossRef]
- Fekry, M.I.; Ezzat, S.M.; Salama, M.M.; Alshehri, O.Y.; Al-Abd, A.M. Bioactive glycoalkaloides isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci. Rep. 2019, 9, 1746. [Google Scholar] [CrossRef]
- Hernández, V.M.; Arteaga, A.; Dunn, M.F. Diversity, properties and functions of bacterial arginases. FEMS Microbiol. Rev. 2021, 45, fuab034. [Google Scholar] [CrossRef]
- Alzahrani, N.H. Isolation, screening, and characterization of l-arginase producing soil fungi in Saudia Arabia. World J. Environ. Biosci. 2020, 9, 45–49. [Google Scholar]
- Gautam, H.; Kumari, N.; Bansal, S. Enhancing the Production of Therapeutic Enzyme Arginase from Lactobacillus acidophilus Using Response Surface Methodology. Braz. Arc. Biol. Technol. 2022, 65, e22210041. [Google Scholar]
- Nadaf, P.; Vedamurthy, A.B. Optimization of l-arginase production by Pseudomonas sp. Strain PV1 under submerged fermentation. Int. J. Sci. Technol. Res. 2020, 9, 4390–4394. [Google Scholar]
- Ibrahim, H.O.; Agbaje, A.B.; Afolabi, H.A.; Usman, H. Effects of temperature, pH, and agitation rate on the production of microbial L-arginase. J. Pharm. Biol. Sci. 2018, 13, 01–12. [Google Scholar]
- Gumashta, R.; Jain, R.; Pandey, A.; Tiwari, P.; Jain, A. Applicability of Native L-Arginase produced by Streptomyces plicatus KAR73 as Antineoplastic Agent. J. Sci. Industrial Res. 2021, 80, 841–849. [Google Scholar]
- Dzikowska, A.; Le Caer, J.P.; Jonczyk, P.; Wëgleński, P. Purification of arginase from Aspergillus nidulans. Acta Biochim. Pol. 1994, 41, 467–471. [Google Scholar]
- Yu, J.J.; Park, K.B.; Kim, S.G.; Oh, S.H. Expression, purification, and biochemical properties of arginase from Bacillus subtilis 168. J. Microbiol. 2013, 51, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Brusdeilins, M.; Hapke, C.; Huberts, H.H.; Schumacher, K. Identification of the apparently lymphocyte-specific human liver-derived inhibitory protein (LIP) as cytoplasmic liver L-arginase. J. Immunol. 1983, 131, 2427–2431. [Google Scholar]
- Hwang, H.J.; Kim, E.H.; Cho, Y.D. Isolation and properties of arginase from a shade plant, ginseng (Panax ginseng C.A. Meyer) roots. Phytochem. 2001, 58, 1015–1024. [Google Scholar] [CrossRef]
- Spolarics, Z.; Bond, J.S. Multiple molecular forms of mouse liver arginase. Arch. Biochem. Biophys. 1988, 260, 469–479. [Google Scholar] [CrossRef]
- Green, S.M.; Eisenstein, E.; McPhie, P.; Hensley, P. The purification and characterization of arginase from Saccharomyces cerevisiae. J. Biol. Chem. 1990, 265, 1601–1607. [Google Scholar]
- Kanda, M.; Ohgishi, K.; Hanawa, T.; Saito, Y. Arginase of Bacillus brevis Nagano: purification, properties, and implication in gramicidin S biosynthesis. Arch. Biochem. Biophys. 1997, 344, 37–42. [Google Scholar] [CrossRef]
- Boutin, J.P. Purification, properties and subunit structure of arginase from Iris bulbs. Eur. J. Biochem. 1982, 127, 237–243. [Google Scholar] [CrossRef]
- Husain, I.; Bala, K.; Wani, A.; Makhdoomi, U.; Malik, F.; Sharma, A. Arginase purified from endophytic Pseudomonas aeruginosa IH2: Induce apoptosis through both cell cycle arrest and MMP loss in human leukemic HL-60 cells. Chem. Biol. Interact. 2017, 274, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.Y.; Quay, D.H.X.; Kamaruddin, S.; Jonet, M.A.; Md Illias, R.; Mahadi, N.M.; Firdaus-Raih, M.; Abu Bakar, F.D.; Abdul Murad, A.M. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles. 2024, 28, 15. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Fujita, M.; Kimura, K. Purification and Properties of L-Arginase from Bacillus subtilis. Agric. Biol. Chem. 1973, 37, 2827–2833. [Google Scholar] [CrossRef]
- Chen, C.L.; Hsu, S.C.; Ann, D.K.; Yen, Y.; Kung, H.J. Arginine Signaling and Cancer Metabolism. Cancers (Basel). 2021, 13, 3541. [Google Scholar] [CrossRef]
- Prajapati, B.; Supriya, N.R. Review on anticancer enzymes and their targeted amino acids. World J. Pharm. Res. 2017, 6, 268–284. [Google Scholar] [CrossRef]
| Time | Arginase absorbance (mean±SD) | Arginase activity (U/ml/min) | Arginase specific activity (U/mg) | Protein content (mg/ml) |
|---|---|---|---|---|
| 72 hours | 1.15±0.008 | 0.75 | 4.14 | 0.18 |
| 120 hours | 1.41±0.003 | 0.92 | 3.52 | 0.26 |
| 168 hours | 2.3±0.005 | 1.5 | 6.8 | 0.22 |
| 216 hours | 1.88±0.02 | 1.22 | 3.06 | 0.4 |
| 264 hours | 0.35±0.008 | 0.22 | 0.93 | 0.24 |
| 312 hours | 0.21±0.029 | 0.13 | 0.63 | 0.21 |
| Temperature | Arginase Abs (mean±SD) | Arginase activity (U/ml/min) | Arginase specific activity (U/mg) | Protein content (mg/ml) |
|---|---|---|---|---|
| 4 °C | 0.12±0.005 | 0.07 | 0.08 | 0.93 |
| 17 °C | 0.85±0.002 | 0.55 | 2.75 | 0.2 |
| 27 °C | 2.11±0.003 | 1.37 | 3.43 | 0.4 |
| 37 °C | 0.49±0.027 | 0.31 | 2.86 | 0.11 |
| 47 °C | 0.29±0.023 | 0.18 | 0.77 | 0.24 |
| Purification stage | Total volume (ml) | Protein content (mg/ml) | Activity (U/ml) | Total protein (mg) | Total activity (U) | Specific activity (U/mg) | Yield (%) | Fold purification |
|---|---|---|---|---|---|---|---|---|
| Crude arginase after concentration step | 300 | 0.29 | 0.7 | 87 | 210 | 2.5 | 100 | 1 |
| Gel filtration using sephadex G 50-150 column chromatography | 190 | 0.39 | 1.69 | 74.1 | 321.1 | 4.33 | 79.33 | 1.73 |
| Purified enzyme | Protein concentration (mg/ml) |
Specific activity (U/mg) |
|---|---|---|
| Crude arginase | 0.29 | 2.5 |
| Purified arginase | 0.39 | 4.33 |
| L-arginine conc. (mM) | Relative activity (%) |
|---|---|
| 25 | 102.15 |
| 50 | 110.95 |
| 75 | 104.29 |
| 100 | 100 |
| 125 | 91.41 |
| 150 | 76.39 |
| Enzyme concentration (mg) | Relative activity (%) |
|---|---|
| 0.02 | 87.26 |
| 0.05 | 89.38 |
| 0.1 | 93.63 |
| 0.19 | 100 |
| 0.29 | 76.64 |
| 0.39 | 2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
