Submitted:
20 March 2025
Posted:
24 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Industrial Non-Destructive Testing and Evaluation
1.2. Design of New CT Systems for Industrial CT
- CT trajectory optimization [17]: Depending on the application, different scanning trajectories yield CT volumes of different image quality. Furthermore, due to the size and complexity of the object, certain views may be inaccessible. It is generally assumed that there is an ideal set of views (scanning trajectory). For complex shaped objects or ROIs with limited accessibility the scan trajectory does not coincide with a circle or a spiral. Consequently, trajectory optimization algorithms must complement or, in some cases, replace decisions made by an expert operator.
- Geometry calibration and mechanical precision [22,23]: For reconstructing sharp, accurate CT volume images from the abovementioned set of projection views, positions of X-ray source and detector must be known with voxel /pixel precision. Depending on the required spatial resolution of an object or ROI, the positioning accuracy of industrial robot arms is generally insufficient to meet this requirement. Consequently, using single- or dual-arm robotic systems requires additional spatial calibration of the projection view geometry.
- 3D CT reconstruction [24]: Dual-arm robotic CT systems enable imaging from non-circular and, in some cases, arbitrary trajectories. As a result, data processing and reconstruction algorithms must be capable of handling projections from such trajectories. Additionally, robotic CT is often used for large objects, requiring reconstruction methods that can process truncated data to reconstruct regions of interest (ROIs). While various CT reconstruction algorithms exist to handle these challenges, each comes with specific advantages and computational efficiency trade-offs.
2. Flexibility in CT Using Different Actuators
2.1. Conventional CT Systems
2.2. Conventional CT Supported by Additional Moving Axes
2.3. Mono Robotic CT Systems
2.4. Twin Robotic CT Systems
2.4.1. Size: Scanning Large Objects






2.4.2. Versatility: One CT System for Circular CT, Helix CT, Laminography and more
2.4.3. Image Quality: Reducing Image Artifacts by Choosing Ideal Views
2.4.4. Scan Time: Reducing the Number of Projections by Choosing Only Task-Relevant Views
2.4.5. Mobility: Moving the CT System to the Object
3. Definitions
3.1. Coordinate Systems
- (world): Base coordinate system of the robotic system.
- (object): Base coordinate system of the object or a ROI of the object that should be measured and reconstructed.
- (detector): Coordinate system of the detector, the origin is in the center of the detector.
- (source): Coordinate system of the X-ray source, the origin is in the focal spot of the X-ray source.
3.2. X-Ray Projection Acquisition
3.3. Robotic Integration
3.4. Reconstruction and Image Quality
- Limited-angle artifacts [45,46]: These artifacts occur when the angular range of projections is restricted, resulting in incomplete data and reduced spatial resolution. This typically leads to blurred or distorted reconstructions. To generate these artifacts, projections were selectively limited to a subset of angles from the reference dataset.
- Sparse-view artifacts (undersampling) [45] occur when the number of projection views is insufficient across the available angular range, resulting in streaking or aliasing effects due to undersampling. To generate these artifacts, fewer views were selected from a complete trajectory.
- Region-of-interest artifacts (ROI) [47] arise when reconstructing a limited field of view, causing inaccuracies due to incomplete projection data outside the ROI. Reconstruction errors manifest at boundaries, leading to distortions or intensity variations. These artifacts were simulated by cropping the projections.
- Metal artifacts [48] are generated by highly attenuating materials (e.g., metallic objects), leading to streak artifacts, beam hardening, and distortions in reconstructed images. To simulate metal artifacts, a metal object was placed near the inspected object, and a second CT scan was performed.
- Blurring artifacts [49] occur due to random absolute positioning inaccuracies inherent in robotic systems. These errors introduce random deviations in scan poses, causing geometric uncertainty and reduced reconstruction accuracy. To simulate these artifacts, normally distributed positional noise was added to the scan poses.
- Double contour artifacts [49] result from incorrectly calibrated robot-tool geometry, specifically due to a constant offset in the source-detector alignment. Such errors cause systematic distortions, loss of spatial accuracy, and double-contour artifacts. To simulate systematic geometric errors, a constant offset was applied to the scan poses.
4. Challenge: CT Trajectory Optimization


4.1. Circular CT Trajectory


4.2. Computed Laminography


4.3. Field of View Extensions
- Volume Stitching: This method involves performing multiple scans where each scan’s projections are reconstructed individually, resulting in separate volumes. These volumes are then stitched together by blending the reconstructed slices to form a single, continuous volume. For successful merging, it is crucial that the acquisition geometries of all related scans match precisely.
- Projection Stitching [14,21]: In this technique as visualized in Figure 24, the field of view is expanded by virtually enlarging the detector area. This is accomplished by shifting the detector within the imaging plane while maintaining the beam geometry. As the detector shifts, it effectively covers a larger area, thereby increasing the field of view. This method is particularly useful when the object being measured exceeds the standard detector dimensions.
- Tomosynthesis / Combined Reconstruction: This approach eliminates the need for stitching by incorporating the merging process directly into the reconstruction algorithm. It can be realized for either projection or volume stitching CT trajectories. By integrating data from multiple scans during reconstruction, it ensures a seamless and accurate representation of the object. One example is the combined reconstruction of a laminography shown in Figure 16.
4.4. Arbitrary Views
- Task-independent: Task-independent trajectory optimization aims to improve the overall image quality without focusing on any specific task. This approach seeks to optimize the imaging process to generate the best possible images across the entire scanned area, ensuring that all features, regardless of their relevance to a specific task, are captured with high quality. These methods are beneficial when the imaging goals are broad, and there is no predefined task or feature that needs to be prioritized [15,17,18]. The optimization process in this case is more generalized, seeking to improve factors such as noise reduction, artifact minimization, and spatial resolution across the entire image [62].
- Task-dependent: Task-dependent trajectory optimization is designed to improve the detectability of specific features or tasks within a CT scan [63]. The main focus is on optimizing the imaging process for a particular known task, such as identifying a specific region of interest or detecting certain features that correspond to crucial signals in the scan. This approach prioritizes the visibility and clarity of the task-relevant features, potentially at the expense of the overall image quality. For instance, some areas of the image might suffer from lower quality or increased artifacts, but the target task, such as detecting a specific anomaly, will be more easily distinguishable [64]. This method is particularly useful when the exact nature of the task is known beforehand, and the CT scan can be tailored to enhance the detection of those specific features.
4.4.1. Task-independent CT Trajectory Optimization
4.4.2. Task-dependent CT Trajectory optimization
4.5. Conclusion: CT Trajectory Optimization
5. Challenge: Geometric Calibration



5.1. Robot Calibration
5.1.1. Factors Affecting Pose Accuracy - Error sources
5.1.2. Calibration Data Acquisition
5.1.3. Calibration Procedures
5.1.4. External Prismatic or Revolute Joints
5.1.5. Conclusion to Robot Calibration
5.2. Image-Based Calibration
5.2.1. Offline Calibration
5.2.2. Online Calibration

5.2.3. Conclusion to image-based geometric calibration
6. Challenge: CT Reconstruction
6.1. Reconstruction Methods
6.1.1. Analytic Reconstruction Methods
6.1.2. Iterative Reconstruction Methods
6.1.3. Deep Learning Reconstruction Methods
6.2. Challenges Regarding Twin Robotic CT Systems
6.2.1. Arbitrary Trajectories
6.2.2. Region Of Interest Reconstruction
6.2.3. Other Challenges
6.3. Conclusion to CT Reconstruction for Robot CT Systems
7. Conclusion
8. Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| ART | Algebraic Reconstruction Technique |
| CBCT | Cone Beam CT |
| ConvNet | Convolutional Neural Network |
| CL | Computed Laminography |
| CNR | Contrast-to-noise Ratio |
| CT | Computed Tomography |
| DART | Discrete Algebraic Reconstruction Technique |
| DLT | Direct Linear Transformation |
| GRU | Gated Recurrent Units |
| FBP | Filtered Back Projection |
| FDD | Focus Detector Distance |
| FDK | Feldkamp, Davis and Kress algorithm |
| FFT | Fast Fourier transform |
| FOV | Field of View |
| FOD | Focus Object Distance |
| MTF | Modulation Transfer Function |
| NPS | Noise Power Spectrum |
| ODD | Object Detector Distance |
| PSNR | Peak-signal-to-noise Ratio |
| ROI | Region of Interest |
| SART | Simultaneous Algebraic Reconstruction Technique |
| SIRT | Simultaneous Iterative Reconstruction Technique |
| SNR | Signal-to-noise Ratio |
| SSIM | Structural Similarity Index |
| TCP | Tool Center Point |
| VA | Volumetric Accuracy |
References
- Zabler, S.; Maisl, M.; Hornberger, P.; Hiller, J.; Fella, C.; Hanke, R. X-ray imaging and computed tomography for engineering applications. tm - Technisches Messen 2021, 88, 211–226. [CrossRef]
- Hounsfield, G.N. Computerized transverse axial scanning (tomography). 1. Description of system. British Journal of Radiology 1973, 46, 1016–1022. [CrossRef]
- Bossi, R.H.; Cooprider, K.K.; Georgeson, G.E. X-ray computed tomography of composites. 36th International SAMPE Symposium and Exhibition 1991, pp. 224–238.
- Sire, P.; Rizo, P.; Martin, M.; Grangeat, P.; Morisseau, P. Development of an Advanced 3D Cone Beam Tomographic System. In Review of Progress in Quantitative Nondestructive Evaluation; Springer, Boston, MA, 1992; pp. 371–378. [CrossRef]
- Waldmann, T.; Gorse, S.; Samtleben, T.; Schneider, G.; Knoblauch, V.; Wohlfahrt-Mehrens, M. A Mechanical Aging Mechanism in Lithium-Ion Batteries. Journal of The Electrochemical Society 2014, 161, A1742–A1747. [CrossRef]
- Mueller, D.; Fella, C.; Altmann, F.; Graetz, J.; Balles, A.; Ring, M.; Gambino, J. Characterization of electrically stressed power device metallization using nano-CT imaging. Microelectronics Reliability 2022, 135, 114589. [CrossRef]
- Ito, M.; Yamaguchi, M.; Oba, K. CsI(Na) Scintillation Plate with High Spatial Resolution. IEEE Transactions on Nuclear Science 1987, 34, 401–405. [CrossRef]
- Singh, J.P.; Bansal, N.P.; Bandyopadhyay, A., Eds. Innovative Processing and Synthesis of Ceramics, Glasses, and Composites V, 1 ed.; Vol. 129, Wiley, 2006. [CrossRef]
- Zabler, S.; Ullherr, M.; Fella, C.; Schielein, R.; Focke, O.; Zeller-Plumhoff, B.; Lhuissier, P.; DeBoever, W.; Hanke, R. Comparing image quality in phase contrast sub-u X-ray tomography - A round-robin study. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2020, 951, 162992. [CrossRef]
- Nils Reims.; Tobias Schoen.; Michael Boehnel.; Frank Sukowski.; Markus Firsching. Strategies for efficient scanning and reconstruction methods on very large objects with high-energy x-ray computed tomography. SPIE, 2014, pp. 72–80. [CrossRef]
- Kumpova, I.; Vopalensky, M.; Fila, T.; Kytyr, D.; Vavrik, D.; Pichotka, M.; Jakubek, J.; Kersner, Z.; Klon, J.; Seitl, S.; et al. On-the-Fly Fast X-Ray Tomography Using a CdTe Pixelated Detector—Application in Mechanical Testing. IEEE Transactions on Nuclear Science 2018, 65, 2870–2876. [CrossRef]
- Rajendran, K.; Petersilka, M.; Henning, A.; Shanblatt, E.R.; Schmidt, B.; Flohr, T.G.; Ferrero, A.; Baffour, F.; Diehn, F.E.; Yu, L.; et al. First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology 2022, 303, 130–138. [CrossRef]
- Wolfgang Holub, Franziska Brunner, Tobias Schön. RoboCT - Application for in-situ inspection of join technologies of large scale objects. International Symposium on Digital Industrial Radiology and Computed Tomography 2019, 2019.
- Wittl, S.; Weiss, A.; Herl, G.; Zabler, S.; Dewailly, P.; Le Goff, R. Unveiling the Full Picture: Advanced Scanning Procedure for Complete Large Component Scans via Twin Robotic Computed Tomography. e-Journal of Nondestructive Testing 2024, 29. [CrossRef]
- Herl, G.; Hiller, J.; Maier, A. Scanning trajectory optimisation using a quantitative Tuybased local quality estimation for robot-based X-ray computed tomography. Nondestructive Testing and Evaluation 2020, 35, 287–303. [CrossRef]
- Herl, G.; Hiller, J.; Thies, M.; Zaech, J.N.; Unberath, M.; Maier, A. Task-Specific Trajectory Optimisation for Twin-Robotic X-Ray Tomography. IEEE Transactions on Computational Imaging 2021, 7, 894–907. [CrossRef]
- Herl, G. Multipositional X-ray Tomography for Avoidance and Reduction of Image Artefacts. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 2022.
- Bauer, F.; Goldammer, M.; Grosse, C. Scan Time Reduction by Fewer Projections - an Approach for Part-Specific Acquisition Trajectories. 2022.
- Ziertmann, A.; Jahnke, P.; Kerscher, S.; Koch, M.; Holub, W. Robot guided Computed Tomography. Journal of the Japan Society for Precision Engineering 2020, 86, 316–322. [CrossRef]
- Evangelista, D.; Terreran, M.; Pretto, A.; Moro, M.; Ferrari, C.; Menegatti, E. 3D Mapping of X-Ray Images in Inspections of Aerospace Parts. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2020, Vol. 1, pp. 1223–1226. [CrossRef]
- Ghita, M.; Uher, J.; Boháčová, J.; Kadeřábek, R. Arbitrary Path CT by Multi-Robot Imaging Platform (RadalyX). e-Journal of Nondestructive Testing 2022, 27. [CrossRef]
- Landstorfer, P.; Hiller, J.; Herbst, M. Investigation of positioning accuracy of industrial robots for robotic-based X-ray computed tomography. e-Journal of Nondestructive Testing 2019, 24. [CrossRef]
- Weiss, A.; Wittl, S.; Herl, G.; Zabler, S. Simulated and experimental evaluation of the accuracy of twin robotic CT systems. 12th Conference on Industrial Computed Tomography (iCT) 2023 2023.
- Banjak, H.; Costin, M.; Vienne, C.; Kaftandjian, V. X-ray Computed Tomography Reconstruction on Non-Standard Trajectories for Robotized Inspection. In Proceedings of the 19th World Conference on Non-Destructive Testing 2016, munich, Germany, 2016.
- Heiken, J.P.; Brink, J.A.; Vannier, M.W. Spiral (helical) CT. Radiology 1993, 189, 647–656. [CrossRef]
- Hu, H. Multi-slice helical CT: scan and reconstruction. Medical physics 1999, 26, 5–18. [CrossRef]
- Zhou, J.; Maisl, M.; Reiter, H.; Arnold, W. Computed laminography for materials testing. Applied Physics Letters 1996, 68, 3500–3502. [CrossRef]
- Gondrom, S.; Zhou, J.; Maisl, M.; Reiter, H.; Kröning, M.; Arnold, W. X-ray computed laminography: an approach of computed tomography for applications with limited access. Nuclear Engineering and Design 1999, 190, 141–147. [CrossRef]
- Herl, G.; Hiller, J.; Sauer, T. Artifact reduction in X-ray computed tomography by multipositional data fusion using local image quality measures. e-Journal of Nondestructive Testing 2019, 24. [CrossRef]
- Yang, D.; Kemp, C.A.J.; Majee, S.; Buzzard, G.T.; Bouman, C.A. Pixel-weighted Multi-pose Fusion for Metal Artifact Reduction in X-ray Computed Tomography.
- Kyrieleis, A.; Ibison, M.; Titarenko, V.; Withers, P.J. Image stitching strategies for tomographic imaging of large objects at high resolution at synchrotron sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2009, 607, 677–684. [CrossRef]
- Dabravolski, A.; Batenburg, K.J.; Sijbers, J. Dynamic angle selection in X-ray computed tomography. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2014, 324, 17–24. [CrossRef]
- de Samber, B.; Renders, J.; Elberfeld, T.; Maris, Y.; Sanctorum, J.; Six, N.; Liang, Z.; de Beenhouwer, J.; Sijbers, J. FleXCT: a flexible X-ray CT scanner with 10 degrees of freedom. Optics express 2021, 29, 3438–3457. [CrossRef]
- Maier, A.; Steidl, S.; Christlein, V.; Hornegger, J., Eds. Medical Imaging Systems: An Introductory Guide; 2018. [CrossRef]
- Krumm, Michael, Christoph Sauerwein, Volker Hämmerle, and Stephan Heile. Robotic x-ray computed tomography system for fast automated non-destructive testing of joints in large assemblies and its application in automotive production. 12th European Conference on Non-Destructive Testing (ECNDT 2018) Proceedings, 2018.
- Pekel, E.; Schaff, F.; Dierolf, M.; Pfeiffer, F.; Lasser, T. X-ray computed tomography with seven degree of freedom robotic sample holder. Engineering Research Express 2022, 4, 035022. [CrossRef]
- Hiller, J.; Landstorfer, P.; Marx, P.; Herbst, M. Evaluation of the impact of faulty scanning trajectories in robot-based x-ray computed tomography. Measurement Science and Technology 2021, 32, 015401. [CrossRef]
- Wolfgang Holub, Ulf Hassler, ChristianSchorr, Michael Maisl. XXL-Micro-CT Comparative Evaluation of Microscopic Computed Tomography for Macroscopic Objects. Digital Industrial Radiology and Computed Tomography 2015, 2015.
- Vienne, C., & Costin. Adapted acquisition trajectory and iterative reconstruction for few-views CT inspection. In 8th Conf. on Industrial Computed Tomography 2018.
- Holub, W. RoboCT - Robot based Micro-CT of full size Composite Aerostructures. 13th European Conference on Non-Destructive Testing. e-Journal of Nondestructive Testing 2023, 28.
- Bussy, V.; Vienne, C.; Kaftandjian, V. Fast algorithms based on Empirical Interpolation Methods for selecting best projections in Sparse-View X-ray Computed Tomography using a priori information. NDT & E International 2023, 134, 102768. [CrossRef]
- Hess, J., & Eberhorn, M.. Mobile Computed Tomography. International Symposium on NDT in Aerospace, 2008.
- Hess, J., Eberhorn, M., Hofmann, M., & Luxa, M.. Advanced Reconstruction Techniques Applied to an On-Site CT System. 2nd Int. Symposium on NDT in Aerospace 2011.
- Gallo, E. The SO(3) and SE(3) Lie Algebras of Rigid Body Rotations and Motions and their Application to Discrete Integration, Gradient Descent Optimization, and State Estimation.
- Sidky, E.Y.; Kao, C.M.; Pan, X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. E. Y. Sidky and C.-M. Kao and X. Pan 2006.
- Frikel, J.; Quinto, E.T. Characterization and reduction of artifacts in limited angle tomography. Inverse Problems 2013, 29, 125007. [CrossRef]
- Chityala, R.; Hoffmann, K.R.; Bednarek, D.R.; Rudin, S. Region of Interest (ROI) Computed Tomography. Proceedings of SPIE–the International Society for Optical Engineering 2004, 5368, 534–541. [CrossRef]
- Lifton, J.J.; Malcolm, A.A.; McBride, J.W. An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology. Measurement Science and Technology 2016, 27, 015007. [CrossRef]
- Ferrucci, M.; Leach, R.K.; Giusca, C.; Carmignato, S.; Dewulf, W. Towards geometrical calibration of x-ray computed tomography systems—a review. Measurement Science and Technology 2015, 26, 092003. [CrossRef]
- Schmitt, R.H.; Buratti, A.; Grozmani, N. Investigating the influence of workpiece placement on the uncertainty of measurements in industrial computed tomography. e-Journal of Nondestructive Testing 2019, 24. [CrossRef]
- Amirkhanov, A.; Heinzl, C.; Reiter, M.; Gröller, E. Visual optimality and stability analysis of 3DCT scan positions. IEEE transactions on visualization and computer graphics 2010, 16, 1477–1486. [CrossRef]
- Linde, M.; Wiest, W.; Trauth, A.; Sause, M.G.R. Selecting Feasible Trajectories for Robot-Based X-ray Tomography by Varying Focus-Detector-Distance in Space Restricted Environments. Journal of Nondestructive Evaluation 2024, 43. [CrossRef]
- Butzhammer, L.; Hausotte, T. Complex 3D scan trajectories for industrial cone-beam computed tomography using a hexapod. Measurement Science and Technology 2021, 32, 105402. [CrossRef]
- Wei, C.; Albrecht, J.; Rit, S.; Laurendeau, M.; Thummerer, A.; Corradini, S.; Belka, C.; Steininger, P.; Ginzinger, F.; Kurz, C.; et al. Reduction of cone-beam CT artifacts in a robotic CBCT device using saddle trajectories with integrated infrared tracking. Medical physics 2024, 51, 1674–1686. [CrossRef]
- Rehak, M.; Hassler, U.; Hanke, R. Acquisition Trajectories for X-Ray Tomosynthesis Applied to Planar Samples 2010.
- Fischer, A.; Lasser, T.; Schrapp, M.; Stephan, J.; Noël, P.B. Object Specific Trajectory Optimization for Industrial X-ray Computed Tomography. Scientific reports 2016, 6, 19135. [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electronics Letters 2008, 44, 800. [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 2004, 13, 600–612. [CrossRef]
- Rafael Corsino González.; Richard E. Woods.; Barry R. Masters. Digital Image Processing, Third Edition. Journal of Biomedical Optics 2009, 14, 029901.
- Haacke, E.M.; Xu, Y.; Cheng, Y.C.N.; Reichenbach, J.R. Susceptibility weighted imaging (SWI). Magnetic resonance in medicine 2004, 52, 612–618. [CrossRef]
- Hatamikia, S.; Biguri, A.; Herl, G.; Kronreif, G.; Reynolds, T.; Kettenbach, J.; Russ, T.; Tersol, A.; Maier, A.; Figl, M.; et al. Source-detector trajectory optimization in cone-beam computed tomography: a comprehensive review on today’s state-of-the-art. Physics in medicine and biology 2022, 67. [CrossRef]
- Zeng, G.L. Medical Image Reconstruction; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010. [CrossRef]
- Gang, G.J.; Stayman, J.W.; Ouadah, S.; Ehtiati, T.; Siewerdsen, J.H. Task-driven imaging in cone-beam computed tomography. Proceedings of SPIE–the International Society for Optical Engineering 2015, 9412. [CrossRef]
- Zaech, J.N.; Gao, C.; Bier, B.; Taylor, R.; Maier, A.; Navab, N.; Unberath, M. Learning to Avoid Poor Images: Towards Task-aware C-arm Cone-beam CT Trajectories. [CrossRef]
- Bauer, F.; Goldammer, M.; Grosse, C.U. Scan Time Reduction by Fewer Projections - an Approach for Circular and Spherical Trajectories. e-Journal of Nondestructive Testing 2024, 29. [CrossRef]
- Gang, G.J.; Siewerdsen, J.H.; Stayman, J.W. Non-circular CT orbit design for elimination of metal artifacts. Proceedings of SPIE–the International Society for Optical Engineering 2020, 11312. [CrossRef]
- Tuy, H.K. An Inversion Formula for Cone-Beam Reconstruction. SIAM Journal on Applied Mathematics 1983, 43, 546–552. [CrossRef]
- Yuan, Y.; Schneider, L.S.; Maier, A. Application of Gated Recurrent Units for CT Trajectory Optimization.
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.
- Haque, M.A.; Ahmad, M.O.; Swamy, M.N.S.; Hasan, M.K.; Lee, S.Y. Adaptive projection selection for computed tomography. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 2013, 22, 5085–5095. [CrossRef]
- Matz, A.; Holub, W.; Schielein, R. Trajectory Optimization in Computed Tomography Based on Object Geometry. e-Journal of Nondestructive Testing 2022, 27. [CrossRef]
- Schielein, R.; Scholz, G.; Wagner, R.; Kretzer, C.; Fuchs, T.; Kasperl, S.; Bär, F.P.; Kirsch, S.; Zepf, M.; Wolters-Rosbach, M. The MUSICES Project : Simulative automated CT acquisition planning for historical brass instruments improves image quality. 2016.
- Shannon, C.E. A Mathematical Theory of Communication. Bell System Technical Journal 1948, 27, 379–423. [CrossRef]
- Brierley, N.; Bellon, C.; Lazaro Toralles, B. Optimized multi-shot imaging inspection design. Proceedings. Mathematical, physical, and engineering sciences 2018, 474, 20170319. [CrossRef]
- Schneider, L.S.; Thies, M.; Schielein, R.; Syben, C.; Unberath, M.; Maier, A. Learning-based Trajectory Optimization for a Twin Robotic CT System. e-Journal of Nondestructive Testing 2023, 28. [CrossRef]
- Linde, M.; Wiest, W.; Trauth, A.; Sause, M.G. Trajectory optimization for few-view robot-based CT: Transitioning from static to object-specific acquisition geometries. Tomography of Materials and Structures 2025, 7, 100058. [CrossRef]
- DIN Deutsches Institut für Normung e.V. DIN 1319-1:1995-01, Grundlagen der Meßtechnik_- Teil_1: Grundbegriffe. [CrossRef]
- Weiss, A.; Wittl, S.; Herl, G.; Zabler, S.; Trauth, A.; Sause, M.G.R. Safeguarding accuracy for CT imaging with industrial robots: Efficient calibration methods for arbitrary trajectories: Anton Weiss, Simon Wittl, Gabriel Herl, Simon Zabler, Anna Trauth, Markus G. R. Sause. e-Journal of Nondestructive Testing 2025, 30. [CrossRef]
- Khaled, T.A.; Akhrif, O.; Bonev, I.A. Dynamic Path Correction of an Industrial Robot Using a Distance Sensor and an ADRC Controller. IEEE/ASME Transactions on Mechatronics 2021, 26, 1646–1656. [CrossRef]
- Nubiola, A.; Bonev, I.A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing 2013, 29, 236–245. [CrossRef]
- Benjamin W. Mooring and Morris Driels and Zvi S. Roth. Fundamentals of manipulator calibration. Journal of Manufacturing Systems 1992, 11, 146. [CrossRef]
- Sigron, P.; Aschwanden, I.; Bambach, M. Compensation of Geometric, Backlash, and Thermal Drift Errors Using a Universal Industrial Robot Model. IEEE Transactions on Automation Science and Engineering 2024, pp. 1–13. [CrossRef]
- Le Reun, A.; Subrin, K.; Dubois, A.; Garnier, S. Thermal drift and backlash issues for industrial robots positioning performance. Robotica 2022, 40, 2933–2952. [CrossRef]
- Klimchik, A.; Wu, Y.; Caro, S.; Furet, B.; Pashkevich, A. Geometric and elastostatic calibration of robotic manipulator using partial pose measurements. Advanced Robotics 2014, 28, 1419–1429. [CrossRef]
- Chen-Gang.; Li-Tong.; Chu-Ming.; Xuan, J.Q.; Xu, S.H. Review on kinematics calibration technology of serial robots. International Journal of Precision Engineering and Manufacturing 2014, 15, 1759–1774. [CrossRef]
- Li, Z.; Li, S.; Luo, X. An overview of calibration technology of industrial robots. IEEE/CAA Journal of Automatica Sinica 2021, 8, 23–36. [CrossRef]
- Ginani, L.S.; Motta, J.M.S.T. Theoretical and practical aspects of robot calibration with experimental verification. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2011, 33, 15–21. [CrossRef]
- Messay, T.; Ordóñez, R.; Marcil, E. Computationally efficient and robust kinematic calibration methodologies and their application to industrial robots. Robotics and Computer-Integrated Manufacturing 2016, 37, 33–48. [CrossRef]
- Deng, K.; Gao, D.; Ma, S.; Zhao, C.; Lu, Y. Elasto-geometrical error and gravity model calibration of an industrial robot using the same optimized configuration set. Robotics and Computer-Integrated Manufacturing 2023, 83, 102558. [CrossRef]
- AUTOMATED PRECISION EUROPE GMBH. API Radian Laser Trracker - Brochure 2021.
- FARO. FARO® Quantum Max - The Next Generation ScanArm, 19.07.2024.
- Renishaw plc.. Data sheet - MP250 Touch Probe, 02.2018.
- Qualisys. Cameras - Arqus - Tech Specs.
- Li, Z.; Li, S.; Luo, X. Data-driven Industrial Robot Arm Calibration: A Machine Learning Perspective. In Proceedings of the 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2021, pp. 1–6. [CrossRef]
- Dynalog Inc.. CompuGauge: Robot Performance Analysis System (ISO-9283), 2024.
- Liu, Y.; Zhuang, Z.; Li, Y. Closed-Loop Kinematic Calibration of Robots Using a Six-Point Measuring Device. IEEE Transactions on Instrumentation and Measurement 2022, 71, 1–12. [CrossRef]
- Yang, X.; Liu, D.; Bai, Y.; Cong, M.; Liao, Z. Kinematics calibration research based on the positioning error of the 6-DOF industrial robot. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2015, pp. 913–917. [CrossRef]
- Wang, B.; Liu, J.; Wang, C. Measurement and analysis of backlash on harmonic drive. IOP Conference Series: Materials Science and Engineering 2019, 542, 012005. [CrossRef]
- Giovannitti, E.; Nabavi, S.; Squillero, G.; Tonda, A. A virtual sensor for backlash in robotic manipulators. Journal of Intelligent Manufacturing 2022, 33, 1921–1937. [CrossRef]
- Abele, E.; Weigold, M.; Rothenbücher, S. Modeling and Identification of an Industrial Robot for Machining Applications. CIRP Annals 2007, 56, 387–390. [CrossRef]
- Cai, Y.; Yuan, P.; Chen, D.; Gao, D.; Wu, X.; Xue, L.; Wang, T. A calibration method of industrial robots based on ELM: 2017 IEEE International Conference on Advanced Robotics and Mechatronics (ICARM) : Hefei & Tai’an, China, August 27-31, 2017; IEEE: Piscataway, NJ, 2017. [CrossRef]
- Li, Z.; Li, S.; Luo, X. A Novel Machine Learning System for Industrial Robot Arm Calibration. IEEE Transactions on Circuits and Systems II: Express Briefs 2024, 71, 2364–2368. [CrossRef]
- Qiao, Y.; Lu, Y.; Hu, H.; Zhuang, C. A Kinematic Calibration Method Based on Residual Network Combining Joint Angles and Robot Pose. In Proceedings of the 2023 5th International Conference on Robotics and Computer Vision (ICRCV). IEEE, 2023, pp. 310–315. [CrossRef]
- Borrmann, C.; Wollnack, J. Calibration of external linear robot axes using spline interpolation. In Proceedings of the Proceedings of 2014 International Conference on Modelling, Identification & Control. IEEE, 2014, pp. 111–116. [CrossRef]
- WEISS GmbH. SCHWERLAST-TISCH CR & TH, 07.2023.
- Lee, J.W.; Park, G.T.; Shin, J.S.; Woo, J.W. Industrial robot calibration method using denavit — Hatenberg parameters: 2017 17th International Conference on Control, Automation and Systems : proceedings : October 18-21, 2017, Ramada Plaza, Jeju, Korea; IEEE: Piscataway, NJ, 2017. [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, 2011. [CrossRef]
- Noo, F.; Clackdoyle, R.; Mennessier, C.; White, T.A.; Roney, T.J. Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography. Physics in medicine and biology 2000, 45, 3489–3508. [CrossRef]
- Cho, Y.; Moseley, D.J.; Siewerdsen, J.H.; Jaffray, D.A. Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Medical physics 2005, 32, 968–983. [CrossRef]
- Jacobson, M.W.; Ketcha, M.D.; Capostagno, S.; Martin, A.; Uneri, A.; Goerres, J.; de Silva, T.; Reaungamornrat, S.; Han, R.; Manbachi, A.; et al. A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories. Physics in medicine and biology 2018, 63, 025030. [CrossRef]
- Strobel, N.K.; Heigl, B.; Brunner, T.M.; Schuetz, O.; Mitschke, M.M.; Wiesent, K.; Mertelmeier, T. Improving 3D image quality of x-ray C-arm imaging systems by using properly designed pose determination systems for calibrating the projection geometry. In Proceedings of the Medical Imaging 2003: Physics of Medical Imaging; Yaffe, M.J.; Antonuk, L.E., Eds. SPIE, 2003, SPIE Proceedings, p. 943. [CrossRef]
- Amr, M., Schön, T., & Suth, D.. A Flexible and Acquisition Geometry-Independent Calibration for Computed Tomography. Proceedings of the 8th Conference on Industrial Computed Tomography (iCT 2018) 2018.
- Li, X.; Da, Z.; Liu, B. A generic geometric calibration method for tomographic imaging systems with flat-panel detectors–a detailed implementation guide. Medical physics 2010, 37, 3844–3854. [CrossRef]
- Mennessier, C.; Clackdoyle, R.; Noo, F. Direct determination of geometric alignment parameters for cone-beam scanners. Physics in medicine and biology 2009, 54, 1633–1660. [CrossRef]
- Butzhammer, L.; Braun, M.R.O.; Hausotte, T. CT scan trajectory calibration based on projected metal spheres: When and how should errors from elliptical distortion be corrected? e-Journal of Nondestructive Testing 2023, 28. [CrossRef]
- Aichert, A.; Bier, B.; Rist, L.; Maier, A.K. Projective invariants for geometric calibration in flat-panel computed tomography. In Proceedings of the Proc CT-Meeting, 2018, pp. 69–72.
- Klein.; Philipp.; Herold.; Frank. Methode zur automatischen Bestimmung der Projektionsgeometrie.
- Wittl, S.; Weiss, A.; Herl, G.; Zabler, S. Keeping Attention to the Mapping. 12th Conference on Industrial Computed Tomography (iCT) 2023 2023.
- Kang, R.; Guerrero, P.; Probst, G.; Slaets, P.; Dewulf, W. Reference free method for robot CT imaging geometry estimation. Precision Engineering 2022, 78, 102–113. [CrossRef]
- Hardner, M.; Liebold, F.; Wagner, F.; Maas, H.G. Investigations into the Geometric Calibration and Systematic Effects of a Micro-CT System. Sensors 2024, 24, 5139. [CrossRef]
- Li, G.; Luo, S.; You, C.; Getzin, M.; Zheng, L.; Wang, G.; Gu, N. A novel calibration method incorporating nonlinear optimization and ball-bearing markers for cone-beam CT with a parameterized trajectory. Medical physics 2019, 46, 152–164. [CrossRef]
- von Smekal, L.; Kachelriess, M.; Stepina, E.; Kalender, W.A. Geometric misalignment and calibration in cone-beam tomography. Medical physics 2004, 31, 3242–3266. [CrossRef]
- Graetz, J. Auto-calibration of cone beam geometries from arbitrary rotating markers using a vector geometry formulation of projection matrices. Physics in medicine and biology 2021, 66. [CrossRef]
- Gross, D.; Heil, U.; Schulze, R.; Schoemer, E.; Schwanecke, U. Auto calibration of a cone-beam-CT. Medical physics 2012, 39, 5959–5970. [CrossRef]
- Butzhammer, L.; Müller, A.M.; Hausotte, T. Calibration of 3D scan trajectories for an industrial computed tomography setup with 6-DOF object manipulator system using a single sphere. Measurement Science and Technology 2023, 34, 015403. [CrossRef]
- Blumensath, T.; O’Brien, N.; Wood, C.E. Calibration of Robotic Manipulator Systems for Cone-Beam Tomography Imaging.
- Li, G.; Chen, X.; You, C.; Huang, X.; Deng, Z.; Luo, S. A nonconvex model-based combined geometric calibration scheme for micro cone-beam CT with irregular trajectories. Medical physics 2023, 50, 2759–2774. [CrossRef]
- Li, G.; Huang, X.; Chen, X.; Wang, H.; Zhou, L.; Ji, X.; Chen, Y.; Luo, S. A Self-Contained Calibration Scheme for Micro-CT With Irregular Trajectories Based on Phantom Auto-Measurement. IEEE Transactions on Instrumentation and Measurement 2025, 74, 1–13. [CrossRef]
- Butzhammer, L.; Handke, N.; Wittl, S.; Herl, G.; Hausotte, T. Direct assessment of the influence of pose repeatability on the accuracy of dimensional measurements for computed tomography systems with high degrees of freedom. Measurement Science and Technology 2025, 36, 025401. [CrossRef]
- Ouadah, S.; Stayman, J.W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J.H. Self-Calibration of Cone-Beam CT Geometry Using 3D-2D Image Registration: Development and Application to Task-Based Imaging with a Robotic C-Arm. Proceedings of SPIE–the International Society for Optical Engineering 2015, 9415. [CrossRef]
- Chung, K.; Schad, L.R.; Zöllner, F.G. Tomosynthesis implementation with adaptive online calibration on clinical C-arm systems. International journal of computer assisted radiology and surgery 2018, 13, 1481–1495. [CrossRef]
- Tönnes, C.; Russ, T.; Schad, L.R.; Zöllner, F.G. Feature-based CBCT self-calibration for arbitrary trajectories. International journal of computer assisted radiology and surgery 2022, 17, 2151–2159. [CrossRef]
- Ji, X.; Lu, Y.; Zhuo, X.; Zhang, Y.; Zhu, S.; Chen, Y. A Geometrical Calibration Method for C-Arm CT Based on a Nonlinear Registration Model. IEEE Transactions on Instrumentation and Measurement 2023, 72, 1–13. [CrossRef]
- Victor Bussy.; Caroline Vienne. Robust 3D/2D hybrid registration for integrating a priori CAD model into X-ray Computed Tomography 2021.
- Kyriakou, Y.; Lapp, R.M.; Hillebrand, L.; Ertel, D.; Kalender, W.A. Simultaneous misalignment correction for approximate circular cone-beam computed tomography. Physics in Medicine and Biology 2008, 53, 6267–6289. [CrossRef]
- Yang, J.; Wang, D.; Fan, B.; Dong, D.; Zhou, W. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement. Optical Engineering 2017, 56, 034111.
- Presenti, A.; Liang, Z.; Pereira, L.F.A.; Sijbers, J.; de Beenhouwer, J. Fast and accurate pose estimation of additive manufactured objects from few X-ray projections. [CrossRef]
- Bossema, F.G.; Palenstijn, W.J.; Heginbotham, A.; Corona, M.; van Leeuwen, T.; van Liere, R.; Dorscheid, J.; O’Flynn, D.; Dyer, J.; Hermens, E.; et al., Eds. Enabling 3D CT-scanning of cultural heritage objects using only in-house 2D X-ray equipment in museums, Vol. 15, 2024. [CrossRef]
- Ma, Y.Q.; Reynolds, T.; Ehtiati, T.; Weiss, C.; Hong, K.; Theodore, N.; Gang, G.J.; Stayman, J.W. Fully automatic online geometric calibration for non-circular cone-beam CT orbits using fiducials with unknown placement. Medical physics 2024. [CrossRef]
- Meng, Y., Gong, H., Yang, X.:. Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects. IEEE TMI 32(2) 2013, pp. 278–288.
- Debbeler, C.e.a. A New CT Rawdata Redundancy Measure applied to Automated Misalignment Correction.
- Defrise, M., Clack, R.. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection.
- Maass, N., Dennerlein, F., Aichert, A., Maier, A.. Geometrical jitter correction in computed tomography. Third CT Meeting 2014, pp. 338–342.
- Cant, J. Automatic geometric calibration of chest tomosynthesis using data consistency conditions - Cant.
- Aichert, A.; Berger, M.; Wang, J.; Maass, N.; Doerfler, A.; Hornegger, J.; Maier, A.K. Epipolar Consistency in Transmission Imaging. IEEE transactions on medical imaging 2015, 34, 2205–2219. [CrossRef]
- Aichert, A. Epipolar Consistency in Fluoroscopy for Image-Based Tracking - Aichert.
- Frysch, R.; Rose, G. Rigid Motion Compensation in Interventional C-arm CT Using Consistency Measure on Projection Data. 9349, 298–306. [CrossRef]
- Li, M.; Bohacova, J.; Uher, J.; Cong, W.; Rubinstein, J.; Wang, G. Motion correction for robot-based x-ray photon-counting CT at ultrahigh resolution 2022. p. 33. [CrossRef]
- Li, M.; Zan, G.; Yun, W.; Uher, J.; Wen, J.; Wang, G. Data-driven imaging geometric recovery of ultrahigh resolution robotic micro-CT for in-vivo and other applications 2024.
- Pedersen, F.H.; Jørgensen, J.S.; Andersen, M.S. A Bayesian approach to CT reconstruction with uncertain geometry. Applied Mathematics in Science and Engineering 2023, 31. [CrossRef]
- Rückert, D.; Wang, Y.; Li, R.; Idoughi, R.; Heidrich, W. NeAT: Neural Adaptive Tomography.
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.
- Rückert, D.; Butzhammer, L.; Wittl, S.; Herl, G.; Hausotte, T.; Kurth, P. Uncalibrated CT Reconstruction for One-Shot Scanning of Arbitrary Trajectories. e-Journal of Nondestructive Testing 2024, 29. [CrossRef]
- Hadamard, J. Lectures on the Cauchy problem in linear partial differential equations; Yale University Press: New Haven, 1923.
- Natterer, F. The Mathematics of Computerized Tomography; John Wiley & Sons, 1986.
- Louis, A.K. Inverse und schlecht gestellte Probleme; Teubner, 1989.
- Rieder, A. Keine Probleme mit inversen Problemen: Eine Einführung in ihre stabile Lösung; Vieweg, 2003.
- Buzug, T.M. Einführung in die Computertomographie; Springer Berlin Heidelberg: Berlin, Heidelberg, 2004. [CrossRef]
- Smith, B.D. Image Reconstruction from Cone-Beam Projections: Necessary and Sufficient Conditions and Reconstruction Methods. IEEE transactions on medical imaging 1985, 4, 14–25.
- Grangeat, P. Mathematical framework of cone-beam reconstruction via the first derivative of the radon transform. In Lecture Notes in Mathematics; Herman, G.T.; Louis, A.K.; Natterer, F., Eds.; Springer, 1991; Vol. 1497, pp. 66–97.
- Defrise, M.; Clack, R. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection. IEEE transactions on medical imaging 1994, 13, 186–195. [CrossRef]
- Kudo, H.; Saito, T. Derivation and Implementation of a Cone-Beam Reconstruction Algorithm for Nonplanar Orbits. IEEE transactions on medical imaging 1994, 13, 196–211.
- Katsevich, A. A general scheme for constructing inversion algorithms for cone beam CT. International Journal of Mathematics and Mathematical Sciences 2003, 2003, 1305–1321.
- Louis, A.K. Development of algorithms in computerized tomography. In Proceedings of the The Radon Transform, Inverse Problems, and Tomography; Olafsson, G.; Quinto, E.T., Eds., 2006, pp. 25–42.
- Louis, A.K. Approximate inverse for linear and some nonlinear problems. Inverse Problems 1996, 12, 175–190.
- Oeckl, S. Rekonstruktionsverfahren mit der approximativen Inversen und einer neuen Formel zur Inversion der Röntgen-Transformation. [CrossRef]
- Lee A. Feldkamp.; L. C. Davis.; James W. Kress. Practical cone-beam algorithm. Journal of The Optical Society of America A-optics Image Science and Vision 1984, 1, 612–619.
- Crawford, C.R.; King, K.F. Computed tomography scanning with simultaneous patient translation. Medical physics 1990, 17, 967–982. [CrossRef]
- Kalender, W.A.; Seissler, W.; Klotz, E.; Vock, P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990, 176, 181–183. [CrossRef]
- Des Plantes, B.G.Z. Eine Neue Methode Zur Differenzierung in der Rontgenographie (Planigraphies). Acta Radiologica 1932, 13, 182–192. [CrossRef]
- Sechopoulos, I. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Medical physics 2013, 40, 014302. [CrossRef]
- Kaczmarz, S. Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin International de l’Académie Polonaise des Sciences et des Lettres 1937, 35, 355–357.
- Gordon, R.; Bender, R.; Herman, G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. Journal of theoretical biology 1970, 29, 471–481. [CrossRef]
- Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of theoretical biology 1972, 36, 105–117. [CrossRef]
- Andersen, A. Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART algorithm. Ultrasonic Imaging 1984, 6, 81–94. [CrossRef]
- Jiang, M.; Wang, G. Convergence studies on iterative algorithms for image reconstruction. IEEE transactions on medical imaging 2003, 22, 569–579. [CrossRef]
- Wang, G.; Jiang, M. Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) 2003. 12.
- Censor, Y.; Elfving, T. Block-Iterative Algorithms with Diagonally Scaled Oblique Projections for the Linear Feasibility Problem. SIAM Journal on Matrix Analysis and Applications 2002, 24, 40–58. [CrossRef]
- Sauer, K.; Bouman, C. A local update strategy for iterative reconstruction from projections. IEEE Transactions on Signal Processing 1993, 41, 534–548. [CrossRef]
- Wang, G.; Yu, H.; de Man, B. An outlook on x-ray CT research and development. Medical physics 2008, 35, 1051–1064. [CrossRef]
- Wang, G.; Ye, J.C.; Mueller, K.; Fessler, J.A. Image Reconstruction is a New Frontier of Machine Learning. IEEE transactions on medical imaging 2018, 37, 1289–1296. [CrossRef]
- Zhang, H.M.; Dong, B. A Review on Deep Learning in Medical Image Reconstruction. Journal of the Operations Research Society of China 2020, 8, 311–340. [CrossRef]
- Wang, G.; Ye, J.C.; de Man, B. Deep learning for tomographic image reconstruction. Nature machine intelligence 2020, 2, 737–748. [CrossRef]
- Bellens, S.; Guerrero, P.; Vandewalle, P.; Dewulf, W. Machine learning in industrial X-ray computed tomography – a review. CIRP Journal of Manufacturing Science and Technology 2024, 51, 324–341. [CrossRef]
- Zhu, B.; Liu, J.Z.; Cauley, S.F.; Rosen, B.R.; Rosen, M.S. Image reconstruction by domain-transform manifold learning. Nature 2018, 555, 487–492. [CrossRef]
- Syben, C.; Michen, M.; Stimpel, B.; Seitz, S.; Ploner, S.; Maier, A.K. Technical Note: PYRO-NN: Python reconstruction operators in neural networks. Medical physics 2019, 46, 5110–5115. [CrossRef]
- Lagerwerf, M.J.; Pelt, D.M.; Palenstijn, W.J.; Batenburg, K.J. A Computationally Efficient Reconstruction Algorithm for Circular Cone-Beam Computed Tomography Using Shallow Neural Networks. Journal of Imaging 2020, 6. [CrossRef]
- Fu, L.; de Man, B. Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms. Visual computing for industry, biomedicine, and art 2022, 5, 30. [CrossRef]
- Ye, C.; Schneider, L.S.; Sun, Y.; Thies, M.; Mei, S.; Maier, A. DRACO: Differentiable Reconstruction for Arbitrary CBCT Orbits. [CrossRef]
- Vienne, C.; Escoda, J.; Touron, A.; Costin, M. Assessing the influence of CT acquisition parameters on flaw detectability through simulation. e-Journal of Nondestructive Testing 2022, 27. [CrossRef]
- Sukowski, F.; Suth, D.; Waldyra, A.; Grulich, T.; Jung, A. Automated 3D Defect Detectionm based on Simulated Reference. e-Journal of Nondestructive Testing 2023, 28. [CrossRef]
- Fleßner, M.; Jung, A.; Baldini, M.; Steinberger, N.; Tolle, K. Analyzing image data to detect a CT system’s error state and identify the corresponding root cause. e-Journal of Nondestructive Testing 2024, 29. [CrossRef]
- Wu, M.; Zhang, J.; Fitzgerald, P.; Jobin, J.; Reddy, N.; Debnath, A.; Haneda, E.; Fan, Y.; Pack, J.; Lorraine, P.; et al. An overview of the open-source CT simulation environment XCIST. In Proceedings of the Proceedings of the 8th International Conference on Image Formation in X-ray Computed Tomography (CT Meeting), 2024, pp. 368–371.
- Krumm, M.; Sauerwein, C.; Hämmerle, V.; Heile, S.; Schön, T.; Jung, A.; Sindel, M. Rapid robotic X-ray computed tomography of large assemblies in automotive production. In Proceedings of the 8th Conference on Industrial Computed Tomography (iCT 2018), Wels, Austria, 2018; Vol. 23.
- Weber, T. Schnelle Rekonstruktionskernberechnung in der 3D-Computertomographie. PhD thesis, Universität des Saarlandes, 2008.
- Schön, T.; Dietmayer, K.; Louis, A.K. New n-dimensional reconstruction formula for flat detector geometry. In Proceedings of the The 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2017, pp. 505–509.
- Noo, F.; Clack, R.; Defrise, M. Cone-beam reconstruction from general discrete vertex sets using Radon rebinning algorithms. IEEE Transactions on Nuclear Science 1997, 44, 1309–1316. [CrossRef]
- Russ, T.; Ma, Y.Q.; Golla, A.K.; Bauer, D.F.; Reynolds, T.; Tönnes, C.; Hatamikia, S.; Schad, L.R.; Zöllner, F.G.; Gang, G.J.; et al. Fast CBCT Reconstruction using Convolutional Neural Networks for Arbitrary Robotic C-arm Orbits. Proceedings of SPIE–the International Society for Optical Engineering 2022, 12031. [CrossRef]
- Clackdoyle, R.; Defrise, M. Tomographic Reconstruction in the 21st Century. IEEE Signal Processing Magazine 2010, 27, 60–80. [CrossRef]
- Banjak, H. X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection. Theses, Université de Lyon, 2016.
- Noo, F.; Clackdoyle, R.; Pack, J.D. A two-step Hilbert transform method for 2D image reconstruction. Physics in Medicine & Biology 2004, 49, 3903. [CrossRef]
- Xia, Y.; Maier, A.; Dennerlein, F.; Hornegger, J. Truncation Correction using a 3D Filter for Cone-beam CT. In Proceedings of the Fully3D 2013; Fully3D., Ed., 2013, pp. 118–121.
- Ihrke, I.; Magnor, M. Adaptive grid optical tomography. Graphical Models 2006, 68, 484–495. [CrossRef]
- Marlevi, D.; Kohr, H.; Buurlage, J.W.; Gao, B.; Batenburg, K.J.; Colarieti-Tosti, M. Multigrid Reconstruction in Tomographic Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences 2020, 4, 300–310. [CrossRef]
- Gregson, J.; Krimerman, M.; Hullin, M.B.; Heidrich, W. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Transactions on Graphics 2012, 31, 1–10. [CrossRef]
- Kopp, F.K.; Nasirudin, R.A.; Mei, K.; Fehringer, A.; Pfeiffer, F.; Rummeny, E.J.; Noël, P.B. Region of interest processing for iterative reconstruction in x-ray computed tomography. In Proceedings of the Medical Imaging 2015: Physics of Medical Imaging; Hoeschen, C.; Kontos, D.; Flohr, T.G., Eds. SPIE, 2015, SPIE Proceedings, p. 94122E. [CrossRef]
- Jung, A.; Maier, A.; Herl, G. Towards Efficient Truncation Correction in Arbitrary Geometry: Residual Projections for Region Of Interest Algebraic Reconstruction. In Proceedings of the Proceedings of the 8th International Conference on Image Formation in X-ray Computed Tomography (CT Meeting), 2024, pp. 122–125.
- Danielsson, P.E.; Magnusson, M. A Proposal for Combining FBP and ART in CT-reconstruction 2003.
- Zeng, G.L.; Gullberg, G.T. Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE transactions on medical imaging 2000, 19, 548–555. [CrossRef]
- Guedouar, R.; Zarrad, B. A comparative study between matched and mis-matched projection/back projection pairs used with ASIRT reconstruction method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2010, 619, 225–229. [CrossRef]
- Guedouar, R.; Zarrad, B. A new reprojection method based on a comparison of popular reprojection models. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2010, 619, 270–275. [CrossRef]
- Grund, N.; Menzel, N.; Guthe, M. High-Quality Wavelet Compressed Textures for Real-Time Rendering. In WSCG 2010 : Communication Papers Proceedings; Vaclav Skala - Union Agency: Plzen, 2010; pp. 207–212.
- Mavridis, P.; Papaioannou, G. Texture Compression using Wavelet Decomposition. Computer Graphics Forum 2012, 31, 2107–2116. [CrossRef]
- Essakine, A.; Cheng, Y.; Cheng, C.W.; Zhang, L.; Deng, Z.; Zhu, L.; Schönlieb, C.B.; Aviles-Rivero, A.I. Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey 2024. [CrossRef]
- Rockmore, A.J.; Macovski, A. A Maximum Likelihood Approach to Transmission Image Reconstruction from Projections. IEEE Transactions on Nuclear Science 1977, 24, 1929–1935. [CrossRef]
- Fessler, J.A. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE transactions on medical imaging 1994, 13, 290–300. [CrossRef]
- Fessler, J.A.; Rogers, W.L. Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 1996, 5, 1346–1358. [CrossRef]
- Elbakri, I.A.; Fessler, J.A. Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE transactions on medical imaging 2002, 21, 89–99. [CrossRef]
- Yu, Z.; Thibault, J.B.; Bouman, C.A.; Sauer, K.D.; Hsieh, J. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 2011, 20, 161–175. [CrossRef]
- Syben, C.; Stimpel, B.; Breininger, K.; Würfl, T.; Fahrig, R.; Dörfler, A.; Maier, A. Precision Learning: Reconstruction Filter Kernel Discretization. [CrossRef]
- Hendriksen, A.A.; Pelt, D.M.; Batenburg, K.J. Noise2Inverse: Self-supervised deep convolutional denoising for tomography 2020. [CrossRef]
- Pelt, D.M.; Batenburg, K.J.; Sethian, J.A. Improving Tomographic Reconstruction from Limited Data Using Mixed-Scale Dense Convolutional Neural Networks. Journal of Imaging 2018, 4, 128. [CrossRef]
- Candes, E.J.; Tao, T. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? IEEE Transactions on Information Theory 2006, 52, 5406–5425. [CrossRef]
- Defrise, M.; Vanhove, C.; Liu, X. An algorithm for total variation regularization in high-dimensional linear problems. Inverse Problems 2011, 27, 065002. [CrossRef]
- Zhang, L.; Vandenberghe, S.; Staelens, S.; Lemahieu, I. A penalized Algebraic Reconstruction Technique (pART) for PET image reconstruction. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007, pp. 3859–3864. [CrossRef]
- Schön, T.; Römer, F.; Oeckl, S.; Großmann, M.; Gruber, R.; Jung, A.; Del Galdo, G. Cycle Time Reduction in Process Integrated Computed Tomography using Compressed Sensing. In Proceedings of the Proceedings of the 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully 3D), Newport, RI, 2015.
- Roemer, F.; Grosmann, M.; Schoen, T.; Gruber, R.; Jung, A.; Oeckl, S.; Del Galdo, G. Differential SART for sub-Nyquist tomographic reconstruction in presence of misalignments. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017, pp. 2354–2358. [CrossRef]
- Lin, Y.; Samei, E. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion. Medical physics 2014, 41, 021911. [CrossRef]
- Herman, G.T.; Kuba, A. Discrete Tomography; Birkhäuser Boston: Boston, MA, 1999. [CrossRef]
- Benedetto, J.J.; Herman, G.T.; Kuba, A. Advances in Discrete Tomography and Its Applications; Birkhäuser Boston: Boston, MA, 2007. [CrossRef]
- Batenburg, K.J.; Sijbers, J. Dart: A Fast Heuristic Algebraic Reconstruction Algorithm for Discrete Tomography. In Proceedings of the 2007 IEEE International Conference on Image Processing. IEEE, 2007, pp. IV – 133–IV – 136. [CrossRef]
- van Gompel, G.; Joost Batenburg, K.; van de Casteele, E.; van Aarle, W.; Sijbers, J. A discrete tomography approach for superresolution micro-CT images: application to bone. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2010, pp. 816–819. [CrossRef]
- Vlasov, V.V.; Konovalov, A.B.; Uglov, A.S. An a priori information based algorithm for artifact preventive reconstruction in few-view computed tomography. In Proceedings of the 2012 5th International Symposium on Communications, Control and Signal Processing. IEEE, 2012, pp. 1–5. [CrossRef]
- Banjak, H.; Costin, M.; Vienne, C.; Guillamet, R.; Kaftandjian, V. Iterative CT reconstruction on limited angle trajectories applied to robotic inspection 2017. p. 020009. [CrossRef]
- Six, N.; de Beenhouwer, J.; Sijbers, J. poly-DART: A discrete algebraic reconstruction technique for polychromatic X-ray CT. Optics express 2019, 27, 33670–33682. [CrossRef]
- Frenkel, D.; Six, N.; de Beenhouwer, J.; Sijbers, J. Tabu-DART: a dynamic update strategy for efficient discrete algebraic reconstruction. The Visual Computer 2023, 39, 4671–4683. [CrossRef]
- Bussy, V. Integration of a priori data to optimise industrial X-ray tomographic reconstruction. Theses, INSA de Lyon, 2024.
- Laurentini, A. The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 1994, 16, 150–162. [CrossRef]
- Schrapp, M.; Scharrer, T.; Goldammer, M.; Rupitsch, S.J.; Sutor, A.; Ermert, H.; Lerch, R. Artifact reduction in non-destructive testing by means of complementary data fusion of x-ray computed tomography and ultrasonic pulse-echo testing. Measurement Science and Technology 2013, 24, 125403. [CrossRef]
- Stayman, J.W.; Otake, Y.; Prince, J.L.; Khanna, A.J.; Siewerdsen, J.H. Model-based tomographic reconstruction of objects containing known components. IEEE transactions on medical imaging 2012, 31, 1837–1848. [CrossRef]
- Xu, Q.; Yu, H.; Mou, X.; Zhang, L.; Hsieh, J.; Wang, G. Low-dose X-ray CT reconstruction via dictionary learning. IEEE transactions on medical imaging 2012, 31, 1682–1697. [CrossRef]
- Zheng, X.; Ravishankar, S.; Long, Y.; Fessler, J.A. PWLS-ULTRA: An Efficient Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction. IEEE transactions on medical imaging 2018, 37, 1498–1510. [CrossRef]
- Schulze, S. Radiographie im Bauwesen – Einsatzmöglichkeiten in der Praxis im Rahmen der ZfPBau. Beton- und Stahlbetonbau 2022, 117, 1008–1017. [CrossRef]





















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
