Submitted:
27 March 2025
Posted:
28 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Artificial Intelligence (AI) in Smart Agriculture
| Older | Application | Reference |
|---|---|---|
| 1 | Weather forecast | [47] |
| 2 | Price forecast | [51] |
| 3 | Robot | [63] |
| 4 | Monitor, manage, care for crops | [65] |
| 5 | Control spraying and watering | [67] |
| 6 | Check crop quality | [69] |
| 7 | Control and eliminate weeds | [73] |
| 8 | Pest detection | [79] |
| 9 | Control water system | [86] |
| 10 | Control fertilize system | [87] |
3.2. Internet of Things (IoT) in Smart Agricultural
| Older | Application | Reference |
|---|---|---|
| 1 | Communication between devices | [89] |
| 2 | Data analytics | [91] |
| 3 | Automatically monitor crop fields | [98] |
| 4 | Control production process | [99,100,101] |
| 5 | Access science information | [107] |
| 6 | Irrigation | [110] |
| 6 | Fertilization | [111] |
| 7 | Control Roboto | [112] |
| 8 | Spray pesticides | [113] |
| 9 | Optimizing valuable resources | [123,124,125,126] |
3.3. Drone in Smart Agricultural
| Older | Application | Reference |
|---|---|---|
| 1 | Pesticide spraying | [142,143,144,145,146,147] |
| 2 | Fertilizing | [148,149,150,151,152,153] |
| 3 | Seed sowing | [154,155,156] |
| 4 | Monitoring crops, livestock | [161] |
| 5 | Grasp the growth status of crops | [162] |
| 6 | Collection data | [165,166,167,168] |
3.4. Irrigation Technology in Smart Agricultal
| Older | Methodologies | Content | Reference |
|---|---|---|---|
| 1 | Drip irrigation | This system delivers water to the root zone and roots of plants through drip chips. Water penetrates deep into the soil, effectively nourishing the roots | [179] |
| 2 | Sprinkler irrigation systems | Widely used because of their ability to simulate natural rain, providing irrigation water for large areas | [180] |
| 3 | Mist irrigation system | using small nozzles to create tiny water droplets like mist | [181] |
3.5. Biotechnology in Smart Agriculture
| Older | Application | Reference |
|---|---|---|
| 1 | Improve plant varieties | [183] |
| 2 | Create growth regulators | [184] |
| 3 | Biology fertilizers (Compost) | [185] |
| 4 | Biological pesticides | [186] |
| 5 | Editing genes to create new varieties | [187] |
| 6 | Resistance | [188] |
| 6 | Biofilms | [192] |
| 7 | Disease diagnostic kits | [193] |
3.6. Nano Technology in Smart Agriculture
| Older | Application | Reference |
|---|---|---|
| 1 | Inhibition pathogenic | [208] |
| 2 | Sucking insects | [209] |
| 3 | Diagnosing viral diseases | [210] |
| 4 | Seed treatment | [211] |
| 5 | Making micronutrient fertilizers | [213] |
| 6 | Prevent and fight diseases | [221] |
| 7 | Production of animal feed | [222] |
3.7. Genetic Technology in Smart Agriculture
| Older | Methodologies | Content | Reference |
|---|---|---|---|
| 1 | DNA sequencing | Determining the order of base pairs in the double helix of a DNA molecule using chemical reactions. | [225] |
| 2 | Cloning | Create growth regulators | [226] |
| 3 | Direct genetic modification | Direct genetic modification, using only genes from the same species. | [227] |
| 4 | Transgenesis | Direct genetic modification using genes from another species. | [228] |
| 5 | Marker genes | Editing genes to create new varieties | [229] |
| 6 | Gene silencing | Direct genetic modification to render a gene in an organism inactive. | [230] |
| 7 | Epigenetics | Studying the effects of reversible genetic changes on gene function that occur without changes in the DNA sequence in the nucleus. | [231] |
3.8. Sensor Technology in Smart Agriculture
| Older | Application | Reference |
|---|---|---|
| 1 | Air temperature and humidity sensor | [248] |
| 2 | Soil temperature and humidity sensors | [249] |
| 4 | Soil PH sensor | [250] |
| 5 | Light sensor | [251] |
| 6 | CO2 Carbon Dioxide Sensor | [252] |
| 7 | Collect data on crops nursery, growth and harvest | [253] |
| 8 | Soil EC sensor | [254] |
| 9 | Monitoring system | [255] |
3.9. Greenhouse’s Technology in Smart Agricultural
| Older | Application | Reference |
|---|---|---|
| 1 | Butterfly-style smart greenhouse | [274] |
| 2 | Mini greenhouse | [275] |
| 3 | Mushroom greenhouse | [276] |
| 4 | One-sided open roof greenhouse | [277] |
| 5 | Two-sided open roof greenhouse | [278] |
| 6 | Dome greenhouse | [279] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agron. 2020, 10, 207. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wageningen J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects. 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability. 2019, 11, 5816. [Google Scholar] [CrossRef]
- Rehmani, M.H.; Reisslein, M.; Rachedi, A.; Erol-Kantarci, M.; Radenkovic, M. Integrating renewable energy resources into the smart grid: Recent developments in information and communication technologies. IEEE Trans. Industr. Inform. 2018, 14, 2814–2825. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Kashif, M.; Fati, S.M.; Bahaj, S.A.; Chaudhry, H. A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agron. 2022, 12, 127. [Google Scholar] [CrossRef]
- Sinha, B.B.; Dhanalakshmi, R. Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Gener. Comput. Syst. 2022, 126, 169–184. [Google Scholar] [CrossRef]
- Hassan, S.I.; Alam, M.M.; Illahi, U.; Al Ghamdi, M.A.; Almotiri, S.H.; Su’ud, M.M. A systematic review on monitoring and advanced control strategies in smart agriculture. Ieee Access. 2021, 9, 32517–32548. [Google Scholar] [CrossRef]
- Ra, S.; Ahmed, M.; Teng, P.S. Creating high-tech ‘agropreneurs’ through education and skills development. Int. J. Train. Res. 2019, 17, 41–53. [Google Scholar] [CrossRef]
- Nie, J.; Wang, Y.; Li, Y.; Chao, X. Sustainable computing in smart agriculture: survey and challenges. Turk. J. Agric. For. 2022, 46, 550–566. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. IJIN. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M. , Khayyam, M., Ismail, S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability. 2021, 13, 4883. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Charania, I.; Li, X. Smart farming: Agriculture's shift from a labor intensive to technology native industry. IEEE Internet Things J. 2020, 9, 100142. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020, 10, 207. [Google Scholar] [CrossRef]
- Frankelius, P.; Norrman, C.; Johansen, K. Agricultural innovation and the role of institutions: lessons from the game of drones. J. Agric. Environ. Ethics. 2019, 32, 681–707. [Google Scholar] [CrossRef]
- Yang, X.; Shu, L.; Chen, J.; Ferrag, M.A.; Wu, J.; Nurellari, E.; Huang, K. A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. IEEE/CAA J. Autom. Sin. 2021, 8, 273–302. [Google Scholar] [CrossRef]
- Tru, N.A.; Cuong, T.H.; Huyen, V.N. Development of High-tech Agriculture in the Context of Industrialization and Urbanization: The Case of Vietnam: Development of High-tech agriculture in the context of Industrialization and urbanization: The case of Vietnam. VJAS. 2020, 3, 663–678. [Google Scholar] [CrossRef]
- Valiev, A.; Dmitriev, A.; Hafizov, K.; Galiev, I. , Nezhmetdinova, F. Agro-bio-techno park as an innovative factor of increasing competitiveness of agriculture under global challenges. Int. Sci. Conf. J. 2017; 1365–1368. [Google Scholar] [CrossRef]
- Chunli, B.A.I. Scientific and technological innovation leads to high-quality development of agriculture in the Yellow River Delta. BCAS. 2020, 35, 138–144. [Google Scholar] [CrossRef]
- Reddy, R.V.S.K.; Omprasad, J.; Janakiram, T. Technological innovations in commercial high-tech horticulture, vertical farming and landscaping. Int. J. Innov. Hortic. 2022, 11, 78–91. [Google Scholar] [CrossRef]
- Guneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Wang, Q.; Cheong, K.C. Urban–rural construction land replacement for more sustainable land use and regional development in China: Policies and practices. Land. 2019, 8, 171. [Google Scholar] [CrossRef]
- Tian, X.; Engel, B.A.; Qian, H.; Hua, E.; Sun, S.; Wang, Y. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 2021, 294, 126285. [Google Scholar] [CrossRef]
- Palikhe, B.R. Relationship between pesticide use and climate change for crops. J. Agric. Environ. 2007, 8, 83–91. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience. 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Neme, K.; Nafady, A.; Uddin, S.; Tola, Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon. 2021, 7. [Google Scholar] [CrossRef]
- Song, S.; Hou, Y.; Lim, R.B.; Gaw, L.Y.; Richards, D.R.; Tan, H.T. Comparison of vegetable production, resource-use efficiency and environmental performance of high-technology and conventional farming systems for urban agriculture in the tropical city of Singapore. Sci. Total Environ. 2022, 807, 150621. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision agriculture for crop and livestock farming—Brief review. Animals. 2021, 11, 2345. [Google Scholar] [CrossRef]
- Sun, B.; Luo, Y.; Yang, D.; Yang, J.; Zhao, Y.; Zhang, J. Coordinative management of soil resources and agricultural farmland environment for food security and sustainable development in China. Int J Environ Res Public Health. 2023, 20, 3233. [Google Scholar] [CrossRef]
- Northrup, D.L.; Basso, B.; Wang, M.Q.; Morgan, C.L.; Benfey, P.N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. PNAS or Proc Natl Acad Sci U S A. 2021, 118, e2022666118. [Google Scholar] [CrossRef] [PubMed]
- Kapur, R. Usage of technology in the agricultural sector. ASAG. 2018, 2, 78–84. [Google Scholar]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van der Wal, T.; Soto, I.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability. 2017, 9, 1339. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. IJIN. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020, 10, 207. [Google Scholar] [CrossRef]
- Bilal, M.; Rubab, F.; Hussain, M.; Shah, S.A.R. Agriculture Revolutionized by Artificial Intelligence: Harvesting the Future. Sci. J. Biol. Sci. 2023, 30, 1–11. [Google Scholar] [CrossRef]
- Indurthi, S.; Sarma, I.; Vinod, D.V. Horticultural Innovations Elevating Crop Yields and Agricultural Sustainability for a Flourishing Future. PCBMB. 2024, 25, 22–44. [Google Scholar] [CrossRef]
- Chatterjee, R. Fundamental concepts of artificial intelligence and its applications. Math. Prob. Equations Stat. 2020, 1, 13–24. [Google Scholar]
- Perez, J.A.; Deligianni, F.; Ravi, D.; Yang, G.Z. Artificial intelligence and robotics. arXiv. 2018, 147, 2–44. [Google Scholar]
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors. 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Eli-Chukwu, N.C. Applications of artificial intelligence in agriculture: A review. Eng. Technol. Appl. Sci. Res. 2019, 9. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020, 10, 207. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Ben Ayed, R.; Hanana, M. Artificial intelligence to improve the food and agriculture sector. J. Food Qual. 2021, (1), 5584754. [Google Scholar] [CrossRef]
- Singh, A.; Mehrotra, R.; Rajput, V.D.; Dmitriev, P.; Singh, A.K.; Kumar, P.; Singh, A.K. Geoinformatics, artificial intelligence, sensor technology, big data: emerging modern tools for sustainable agriculture. Sustain. Agric. Syst. Technol. 2022, 295–313. [Google Scholar] [CrossRef]
- Akkem, Y.; Biswas, S.K.; Varanasi, A. Smart farming using artificial intelligence: A review. Eng. Appl. Artif. Intell. 2023, 120, 105899. [Google Scholar] [CrossRef]
- Pham, B.T.; Le, L.M.; Le, T.T.; Bui, K.T.T.; Le, V.M.; Ly, H.B.; Prakash, I. Development of advanced artificial intelligence models for daily rainfall prediction. Atmos. Res. 2020, 237, 104845. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar] [CrossRef]
- Kanojia, V. Artificial intelligence and smart farming: An overview varsha kanojia, a. subeesh, and NL Kushwaha. Technol Appl. 2024, 1. [Google Scholar]
- Batz, P.; Will, T.; Thiel, S.; Ziesche, T.M.; Joachim, C. From identification to forecasting: the potential of image recognition and artificial intelligence for aphid pest monitoring. Front. Plant Sci. 2023, 14, 1150748. [Google Scholar] [CrossRef] [PubMed]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. Ieee Access. 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif Intell Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Jianmin, G.; Syed, T.N.; Chandio, F.A.; Buttar, N.A.; Qureshi, W.A. Monitoring and control systems in agriculture using intelligent sensor techniques: A review of the aeroponic system. J. Sens. 2018, (1), 8672769. [Google Scholar] [CrossRef]
- Martínez, J.; Egea, G.; Agüera, J.; Pérez-Ruiz, M. A cost-effective canopy temperature measurement system for precision agriculture: A case study on sugar beet. Precis. Agric. 2017, 18, 95–110. [Google Scholar] [CrossRef]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. Ieee Access. 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H. , & Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif Intell Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020, 10, 207. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.A.; Abd-Elmabod, S.K.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Javaid, M. , Haleem, A., Singh, R.P., & Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. Ecosyst. Manag. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Taneja, A.; Nair, G.; Joshi, M.; Sharma, S.; Sharma, S.; Jambrak, A.R.; Phimolsiripol, Y. Artificial intelligence: Implications for the agri-food sector. Agronomy. 2023, 13, 1397. [Google Scholar] [CrossRef]
- Gonzalez-de-Santos, P.; Fernández, R.; Sepúlveda, D.; Navas, E. , Emmi, L.; Armada, M. Field robots for intelligent farms—Inhering features from industry. Agronomy. 2020, 10, 1638. [Google Scholar] [CrossRef]
- Singh, S.; Jain, P. Applications of artificial intelligence for the development of sustainable agriculture. Agro-biodiv. Agri-ecosyst. Manage. 2022; 303–322. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif Intell Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Vougioukas, S.G. Agricultural robotics. Annu. Rev. Control Robot. Auton. Syst. 2019, 2, 365–392. [Google Scholar] [CrossRef]
- Vasconez, J.P.; Kantor, G.A.; Cheein, F.A.A. Human–robot interaction in agriculture: A survey and current challenges. Biosyst. Eng. 2019, 179, 35–48. [Google Scholar] [CrossRef]
- Fountas, S.; Malounas, I.; Athanasakos, L.; Avgoustakis, I.; Espejo-Garcia, B. AI-assisted vision for agricultural robots. AgriEngineering. 2022, 4, 674–694. [Google Scholar] [CrossRef]
- Muscato, G.; Prestifilippo, M.; Abbate, N.; Rizzuto, I. A prototype of an orange picking robot: past history, the new robot and experimental results. IND ROBOT. 2005, 32, 128–138. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J FIELD ROBOT. 2020, 37, 202–224. [Google Scholar] [CrossRef]
- Jun, J.; Kim, J.; Seol, J.; Kim, J.; Son, H.I. Towards an efficient tomato harvesting robot: 3D perception, manipulation, and end-effector. IEEE access. 2021, 9, 17631–17640. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Cutulle, M. Robotic weeders can improve weed control options for specialty crops. Pest Manag. Sci. 2019, 75, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, I.; Saha, J.; Venkatasubbu, P.; Ramasubramanian, P. AI crop predictor and weed detector using wireless technologies: a smart application for farmers. Arab. J. Sci. Eng. 2020, 45, 11115–11127. [Google Scholar] [CrossRef]
- Malook, M.B.; Moeen, M.; Noureen, A.; Majid, A.; Barua, S.; Riaz, M.; Abubakar, M. Artificial Intelligence in Agriculture for Application of Pesticides and Herbicides. NeuroQuantology. 2023, 21, 1291. [Google Scholar]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Naresh, R.K.; Chandra, M.S.; Charankumar, G.R.; Chaitanya, J.; Alam, M.S.; Singh, P.K.; Ahlawat, P. The prospect of artificial intelligence (AI) in precision agriculture for farming systems productivity in sub-tropical India: A review. Curr. J. Appl. Sci. Technol. 2020, 39, 96–110. [Google Scholar] [CrossRef]
- Ali, M.A.; Dhanaraj, R.K.; Nayyar, A. A high performance-oriented AI-enabled IoT-based pest detection system using sound analytics in large agricultural fields. Microprocess. Microsyst. 2023, 103, 104946. [Google Scholar] [CrossRef]
- Lutz, É.; Coradi, P.C. Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence. Measurement. 2022, 188, 110609. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif Intell Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Naresh, R.K.; Chandra, M.S.; Charankumar, G.R.; Chaitanya, J.; Alam, M.S.; Singh, P.K.; Ahlawat, P. The prospect of artificial intelligence (AI) in precision agriculture for farming systems productivity in sub-tropical India: A review. Curr. J. Appl. Sci. Technol. 2020, 39, 96–110. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. J. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Dhanya, V.G.; Subeesh, A.; Kushwaha, N.L.; Vishwakarma, D.K.; Kumar, T.N.; Ritika, G.; Singh, A.N. Deep learning based computer vision approaches for smart agricultural applications. Artif Intell Agric. 2022, 6, 211–229. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Elfiky, N. Application of artificial intelligence in the food industry: AI-based automatic pruning of dormant apple trees. Artif. Intell. 2022, 1–15. [Google Scholar] [CrossRef]
- Kopetz, H.; Steiner, W. Internet of things. In REAL-TIME SYST. 2022, 325-341.
- Capra, M.; Peloso, R.; Masera, G.; Ruo Roch, M.; Martina, M. Edge computing: A survey on the hardware requirements in the internet of things world. Future Internet. 2019, 11, 100. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, M. The Internet of Things in a smart connected world. IEEE Internet Things. 2018, 91. [Google Scholar] [CrossRef]
- Abid, M.A.; Afaqui, N.; Khan, M.A.; Akhtar, M.W.; Malik, A.W.; Munir, A.; Shabir, B. Evolution towards smart and software-defined internet of things. AI. 2022, 3, 100–123. [Google Scholar] [CrossRef]
- Bzai, J.; Alam, F.; Dhafer, A.; Bojović, M.; Altowaijri, S.M.; Niazi, I.K.; Mehmood, R. Machine learning-enabled internet of things (iot): Data, applications, and industry perspective. Electronics. 2022, 11, 2676. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3, 208–218. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access. 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agric. 2022, 12, 1745. [Google Scholar] [CrossRef]
- Sekaran, K.; Meqdad, M.N.; Kumar, P.; Rajan, S.; Kadry, S. Smart agriculture management system using internet of things. TELKOMNIKA. 2020, 18, 1275–1284. [Google Scholar] [CrossRef]
- Perumal, S.S.S.A. The Transformative Impact of Iot and Enabling Technologies for Precision Agriculture. Webology. 2021, 18, 1735–188X. [Google Scholar]
- Dayıoğlu, M.A.; Turker, U. Digital transformation for sustainable future-agriculture 4.0: A review. Agric. Sci. 2021, 27, 373–399. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture. 2022, 12, 1745. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access. 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Raj, M.; Gupta, S.; Chamola, V.; Elhence, A.; Garg, T.; Atiquzzaman, M.; Niyato, D. A survey on the role of Internet Things for adopting and promoting Agriculture 4.0. J. Netw. Comput. Appl. 2021, 187, 103107. [Google Scholar] [CrossRef]
- Parween, S.; Hameed, R.S.; Sinha, K. Iot and its real-time application in agriculture. KO. 2021, 103–123. [Google Scholar] [CrossRef]
- Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [Google Scholar] [CrossRef]
- Obaideen, K.; Yousef, B.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An overview of smart irrigation systems using IoT. Energy Nexus. 2022, 7, 100124. [Google Scholar] [CrossRef]
- Swaminathan, B.; Palani, S.; Vairavasundaram, S.; Kotecha, K.; Kumar, V. IoT-driven artificial intelligence technique for fertilizer recommendation model. IEEE Consum. Electron. Mag. 2022, 12, 109–117. [Google Scholar] [CrossRef]
- Kasera, R.K.; Gour, S.; Acharjee, T. A comprehensive survey on IoT and AI based applications in different pre-harvest, during-harvest and post-harvest activities of smart agriculture. Comput. Electron. Agric. 2024, 216, 108522. [Google Scholar] [CrossRef]
- Demirel, M.; Kumral, N.A. Artificial intelligence in integrated pest management. J. nAI-IoT-Agri. 2021; 289–313. [Google Scholar]
- Xing, H.; Xiaofeng, L. Agricultural labor market equilibrium based on FPGA platform and IoT communication. Microprocess. Microsyst. 2021, 80, 103332. [Google Scholar] [CrossRef]
- Madushanki, A.R.; Halgamuge, M.N.; Wirasagoda, W.S.; Syed, A. Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review. IJACSA. 2019, 10, 11–28. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Mendez-Guzmán, H.A.; Padilla-Medina, J.A.; Martínez-Nolasco, C.; Martinez-Nolasco, J.J.; Barranco-Gutiérrez, A.I.; Contreras-Medina, L.M.; Leon-Rodriguez, M. Iot-based monitoring system applied to aeroponics greenhouse. Sensors. 2022, 22, 5646. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access. 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEe Access. 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture. 2022, 12, 1745. [Google Scholar] [CrossRef]
- Alahmad, T.; Neményi, M.; Nyéki, A. Applying IoT sensors and big data to improve precision crop production: a review. Agronomy. 2023, 13, 2603. [Google Scholar] [CrossRef]
- Sanjeevi, P.; Prasanna, S.; Siva Kumar, B.; Gunasekaran, G.; Alagiri, I.; Vijay Anand, R. Precision agriculture and farming using Internet of Things based on wireless sensor network. T EMERG TELECOMMUN T. 2020, 31, e3978. [Google Scholar] [CrossRef]
- Pachiappan, K.; Anitha, K.; Pitchai, R.; Sangeetha, S.; Satyanarayana, T.V.V.; Boopathi, S. Intelligent Machines, IoT, and AI in Revolutionizing Agriculture for Water Processing. Int. J. Artif. Intell. & Mach. Learn. 2024; 374–399. [Google Scholar] [CrossRef]
- Ruiz, D.P.; Vasquez, R.A.D.; Jadan, B.V. Predictive Energy Management in Internet of Things: Optimization of Smart Buildings for Energy Efficiency. JISIoT. 2023, 10. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access. 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Maraveas, C.; Piromalis, D.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. Applications of IoT for optimized greenhouse environment and resources management. Comput. Electron. Agric. 2022, 198, 106993. [Google Scholar] [CrossRef]
- Namana, M.S.K.; Rathnala, P.; Sura, S.R.; Patnaik, P.; Rao, G.N.; Naidu, P.V. Internet of things for smart agriculture–state of the art and challenges. Ecol. Eng. Environ. Tech. 2022, 23. [Google Scholar] [CrossRef]
- Ting, L.; Khan, M.; Sharma, A.; Ansari, M.D. A secure framework for IoT-based smart climate agriculture system: Toward blockchain and edge computing. J. Intell. Syst. 2022, 31, 221–236. [Google Scholar] [CrossRef]
- Chabot, D. Trends in drone research and applications as the Journal of Unmanned Vehicle Systems turns five. Journal of Unmanned Vehicle Systems 2018, 6, vi. [Google Scholar] [CrossRef]
- Akbari, Y.; Almaadeed, N.; Al-Maadeed, S.; Elharrouss, O. Applications, databases and open computer vision research from drone videos and images: a survey. Artif. Intell. Rev. 2021, 54, 3887–3938. [Google Scholar] [CrossRef]
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks. 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Palomba, G.; Crupi, V.; Epasto, G. Additively manufactured lightweight monitoring drones: Design and experimental investigation. Polymer. 2022, 241, 124557. [Google Scholar] [CrossRef]
- Joshi, D.; Deb, D.; Muyeen, S.M. Comprehensive review on electric propulsion system of unmanned aerial vehicles. Front. Energy Res. 2022, 10, 752012. [Google Scholar] [CrossRef]
- Townsend, A.; Jiya, I.N.; Martinson, C.; Bessarabov, D.; Gouws, R. A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements. Heliyon. 2020, 6. [Google Scholar] [CrossRef]
- Kangunde, V.; Jamisola Jr, R.S.; Theophilus, E.K. A review on drones controlled in real-time. Int. J. Dyn. Contr. 2021, 9, 1832–1846. [Google Scholar] [CrossRef]
- Ghazali, M.H.M.; Rahiman, W. An investigation of the reliability of different types of sensors in the real-time vibration-based anomaly inspection in drone. Sensors. 2022, 22, 6015. [Google Scholar] [CrossRef]
- Ebeid, E.; Skriver, M.; Terkildsen, K.H.; Jensen, K.; Schultz, U.P. A survey of open-source UAV flight controllers and flight simulators. Microprocess. Microsyst. 2018, 61, 11–20. [Google Scholar] [CrossRef]
- Unlu, E.; Zenou, E.; Riviere, N.; Dupouy, P.E. Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Sarfraz, S.; Ali, F.; Hameed, A.; Ahmad, Z.; Riaz, K. Sustainable agriculture through technological innovations. J. Sustain. Agric. 2023, 223–239. [Google Scholar] [CrossRef]
- Javaid, M.; Khan, I.H.; Singh, R.P.; Rab, S.; Suman, R. Exploring contributions of drones towards Industry 4.0. IND ROBOT. 2022, 49, 476–490. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture. 2023, 13, 1593. [Google Scholar] [CrossRef]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Soni, S.K. Implementation of drone technology for farm monitoring & pesticide spraying: A review. Inf. Process. Agric. 2023, 10, 192–203. [Google Scholar] [CrossRef]
- Nahiyoon, S.A.; Ren, Z.; Wei, P.; Li, X.; Li, X.; Xu, J.; Yuan, H. Recent development trends in plant protection UAVs: A journey from conventional practices to cutting-edge technologies—A comprehensive Review. Drones 2024, 8, 457. [Google Scholar] [CrossRef]
- Biswas, S.; Pandey, R.; Barua, E.; Lawrence, I.D. Advancements in Precision Agriculture: Pesticide Spraying Drones. Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5, 1–19. [Google Scholar]
- Pathak, H.; Kumar, G.; Mohapatra, S.D.; Gaikwad, B.B.; Rane, J. Use of drones in agriculture: Potentials, Problems and Policy Needs. Int. J. Stress Manag. 2020, 300, 4–15. [Google Scholar]
- Jeelani, I.; Gheisari, M. Safety challenges of human-drone interactions on construction jobsites. Autom. Constr. 2022, 143–164. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. IJIN. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Singh, A.K. Precision agriculture in india opportunities and challenges. Indian J. Fertilisers. 2022, 18, 308–331. [Google Scholar]
- Guebsi, R.; Mami, S.; Chokmani, K. Drones in precision agriculture: A comprehensive review of applications, technologies, and challenges. Drones. 2024, 8, 686. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Goudos, S.K. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. IEEE Internet Things J. 2022, 18, 100187. [Google Scholar] [CrossRef]
- Raza, I.; Zubair, M.; Zaib, M.; Khalil, M.H.; Haidar, A.; Sikandar, A.; Ashfaq, M.A. Precision nutrient application techniques to improve soil fertility and crop yield: A review with future prospect. IRJET. 2023. [Google Scholar]
- Singh, A.K. Precision agriculture in india–opportunities and challenges. Indian J. Fertilisers. 2022, 18, 308–331. [Google Scholar]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Soni, S.K. Implementation of drone technology for farm monitoring & pesticide spraying: A review. Inf. Process. Agric. 2023, 10, 192–203. [Google Scholar] [CrossRef]
- Yawson, G.E.; Frimpong-Wiafe. The socio-economic benefits and impact of the study on the application of drones, sensor technology and intelligent systems in commercial-scale agricultural establishments in Africa. Int. J. Agric. Econ. 2018, 6, 18–36. [Google Scholar]
- Makam. ; Swetha.; Bharath Kumar Komatineni.; Sanwal Singh Meena.; Urmila Meena. Unmanned aerial vehicles (UAVs): an adoptable technology for precise and smart farming. IEEE Internet Things J. 2024, 4, 12. [Google Scholar] [CrossRef]
- Alyafei, M.A.; Al Dakheel, A.; Almoosa, M.; Ahmed, Z.F. Innovative and effective spray method for artificial pollination of date palm using drone. HortScience. 2022, 57, 1298–1305. [Google Scholar] [CrossRef]
- Padhiary, M.; Saha, D.; Kumar, R.; Sethi, L.N.; Kumar, A. Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicles for farm automation. SMART AGR TECHNOL. 2024, 100483. [Google Scholar] [CrossRef]
- Broussard, M.A.; Coates, M.; Martinsen, P. Artificial Pollination technologies: A review. Agronomy. 2023, 13, 1351. [Google Scholar] [CrossRef]
- Alyafei, M.A.; Al Dakheel, A.; Almoosa, M.; Ahmed, Z.F. Innovative and effective spray method for artificial pollination of date palm using drone. HortScience. 2022, 57, 1298–1305. [Google Scholar] [CrossRef]
- Manthos, I.; Sotiropoulos, T.; Vagelas, I. Is the Artificial Pollination of Walnut Trees with Drones Able to Minimize the Presence of Xanthomonas arboricola pv. juglandis? Appl. Sci. 2024, 14, 2732. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision agriculture for crop and livestock farming—Brief review. Animals. 2021, 11, 2345. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access. 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Panday, U.S.; Pratihast, A.K.; Aryal, J.; Kayastha, R.B. A review on drone-based data solutions for cereal crops. Drones. 2020, 4, 41. [Google Scholar] [CrossRef]
- Alanezi, M.A.; Shahriar, M.S.; Hasan, M.B.; Ahmed, S.; Yusuf, A.; Bouchekara, H.R. Livestock management with unmanned aerial vehicles: A review. IEEE Access. 2022, 10, 45001–45028. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information. 2019, 10, 349. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.A.; Abd-Elmabod, S.K.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020, 10, 207. [Google Scholar] [CrossRef]
- Budiharto, W.; Irwansyah, E.; Suroso, J.S.; Chowanda, A.; Ngarianto, H.; Gunawan, A.A.S. Mapping and 3D modelling using quadrotor drone and GIS software. Egypt. J. Big Data. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Nasreen, S.; Ashraf, M.A. Inadequate supply of water in agriculture sector of Pakistan due to depleting water reservoirs and redundant irrigation system. WCM. 2020, 5, 13–19. [Google Scholar] [CrossRef]
- Qian, M.; Qian, C.; Xu, G.; Tian, P.; Yu, W. Smart Irrigation Systems from Cyber–Physical Perspective: State of Art and Future Directions. Future Internet. 2024, 16, 234. [Google Scholar] [CrossRef]
- Bhavsar, D.; Limbasia, B.; Mori, Y.; Aglodiya, M.I.; Shah, M. A comprehensive and systematic study in smart drip and sprinkler irrigation systems. SMART AGR TECHNOL. 2023, 5, 100303. [Google Scholar] [CrossRef]
- Obaideen, K.; Yousef, B.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An overview of smart irrigation systems using IoT. Energy Nexus. 2022, 7, 100124. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Abd Rahman, M.K.I.; Ramli, M.S.A. A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Khoa, T.A.; Man, M.M.; Nguyen, T.Y.; Nguyen, V.; Nam, N.H. Smart agriculture using IoT multi-sensors: A novel watering management system. J. Sens. Actuator Netw. 2019, 8, 45. [Google Scholar] [CrossRef]
- Obaideen, K.; Yousef, B.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An overview of smart irrigation systems using IoT. Energy Nexus. 2022, 7, 100124. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Muthuminal, R.; Priya, R.M. An Outlook Over Smart Irrigation System for Sustainable Rural Development. Sustain. Dev. 2023, 134–160. [Google Scholar]
- Sang, H.; Wambua, R.; Raude, J. Yield response, water use and water productivity of tomato under deficit sub-surface drip irrigation and mulching. Sustain. Res. Eng. 2020, 6, 47–55. [Google Scholar]
- Lin, M.; Sadeghi, S.M.M.; Van Stan, J.T. Partitioning of rainfall and sprinkler-irrigation by crop canopies: A global review and evaluation of available research. Hydrology. 2020, 7, 76. [Google Scholar] [CrossRef]
- Korlepara, N.P.; Raju, V.N.; Satyanarayana, P.V.V.; Kumar, V.S.; Priya, Y.J.; Vardan, D.H. Real-Time Precision Irrigation System for Optimal Crop Yield and Water Conservation. IOP Conf. Ser.: Earth Environ. Sci. 0120. [Google Scholar]
- Munawar, S.; Qamar, M.T.; Mustafa, G.; Khan, M.S.; Joyia, F.A. Role of biotechnology in climate resilient agriculture. J. Plant Veg. Growth. 2020, 339–365. [Google Scholar]
- Qaim, M. Role of new plant breeding technologies for food security and sustainable agricultural development. AEPP. 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Mehta, A.; Niaz, M.; Adetoro, A.; Nwagwu, U. Advancements in Manufacturing Technology for the Biotechnology Industry: The Role of Artificial Intelligence and Emerging Trends. Int. j. chem. math. phys. or IJCMP. 2024, 8, 12–18. [Google Scholar] [CrossRef]
- Osorio-Reyes, J.G.; Valenzuela-Amaro, H.M.; Pizaña-Aranda, J.J.P.; Ramírez-Gamboa, D.; Meléndez-Sánchez, E.R.; López-Arellanes, M.E.; Martínez-Ruiz, M. Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Mar. Drugs. 2023, 21, 93. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Andualem, B.; Seid, A. The role of green biotechnology through genetic engineering for climate change mitigation and adaptation, and for food security: current challenges and future perspectives. J. adv. biol. biotechnol. 2021, 24, 1–11. [Google Scholar]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
- Das, S.; Ray, M.K.; Panday, D.; Mishra, P.K. Role of biotechnology in creating sustainable agriculture. PLOS sustain. transform. 2023, 2, e0000069. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E. , Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Makhlouf, Z.; Ali, A.A.; Al-Sayah, M.H. Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation. Antibiotics. 2023, 12, 875. [Google Scholar] [CrossRef]
- Pierzynowska, K.; Morcinek-Orłowska, J.; Gaffke, L.; Jaroszewicz, W.; Skowron, P.M.; Węgrzyn, G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit. Rev. Microbiol. 2024, 50, 450–490. [Google Scholar] [CrossRef]
- Tan, C.; Kalhoro, M.T.; Faqir, Y.; Ma, J.; Osei, M.D.; Khaliq, G. Climate-resilient microbial biotechnology: A perspective on sustainable agriculture. Sustainability. 2022, 14, 5574. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Ji, R. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An introduction to nanotechnology. Interface Sci. Technol. 2019, 28, 1–27. [Google Scholar]
- Francis, D.V.; Abdalla, A.K.; Mahakham, W.; Sarmah, A.K.; Ahmed, Z.F. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ. Int. 2024, 108859. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; ur Rehman, H. .; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A revolution in modern industry. Molecules. 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, K.; Alyami, M.H.; Lang, D.K.; Saini, B.; Bayan, M.F.; Chandrasekaran, B. Combating microbial infections using metal-based nanoparticles as potential therapeutic alternatives. Antibiotics. 2023, 12, 909. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Hashem, A.; Abd Allah, E.F.; Jena, S.K.; Mohanta, T.K. Bacterial synthesized metal and metal salt nanoparticles in biomedical applications: an up and coming approach. Appl. Organomet. Chem. 2020, 34, e5810. [Google Scholar] [CrossRef]
- Almeida, L.C.; Araujo Sousa, F.; Leonardo Mendes, B.; Ferreira Duarte, D.; Ribeiro Santiago, T.; Rodrigues de Souza, E.; Rios, J.A. Silver nanoparticles as potential fungicide against rice brown spot: physiological and biochemical responses in plants. Trop. Plant Pathol. 2024, 49, 689–701. [Google Scholar] [CrossRef]
- Chaudhary, M.; Choudhary, P.; Tripathi, A.; Pandey, V.K.; Sharma, R.; Singh, S.; Pathak, A. Pharmaceutical orientation and applications of silver/zinc oxide nanoparticles developed from various fruit peel extracts: an emerging sustainable approach. Discov. Sustain. 2025, 6, 7. [Google Scholar] [CrossRef]
- Hoang, N.H.; Le Thanh, T.; Thepbandit, W.; Treekoon, J.; Saengchan, C.; Sangpueak, R.; Buensanteai, N. Efficacy of chitosan nanoparticle loaded-salicylic acid and-silver on management of cassava leaf spot disease. Polymers. 2022, 14, 660. [Google Scholar] [CrossRef]
- Sabir, S.; Arshad, M.; Ilyas, N.; Naz, F.; Amjad, M.S.; Malik, N.Z.; Chaudhari, S.K. Protective role of foliar application of green-synthesized silver nanoparticles against wheat stripe rust disease caused by Puccinia striiformis. GREEN PROCESS SYNTH. 2022, 11, 29–43. [Google Scholar] [CrossRef]
- Vinay, J.U.; Iliger, K.S. Green Nanotechnology in Agriculture: Plant Disease Diagnosis to Management. Plant Dis. Prot. 2021, 67–95. [Google Scholar]
- Abdelaziz, A.M.; Elshaer, M.A.; Abd-Elraheem, M.A.; Ali, O.M.O.M.; Haggag, M.I.; El-Sayyad, G.S.; Attia, M.S. Ziziphus spina-christi extract-stabilized novel silver nanoparticle synthesis for combating Fusarium oxysporum-causing pepper wilt disease: In vitro and in vivo studies. Arch. Microbiol. 2023, 205, 69. [Google Scholar] [CrossRef] [PubMed]
- Sardar, M.; Ahmed, W.; Al Ayoubi, S.; Nisa, S.; Bibi, Y.; Sabir, M.; Qayyum, A. Fungicidal synergistic effect of biogenically synthesized zinc oxide and copper oxide nanoparticles against Alternaria citri causing citrus black rot disease. Saudi J Biol Sci. 2022, 29, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Kannan, M.; Mohan, M.; Elango, K.; Govindaraju, K.; Mani, M. Principles and application of nanotechnology in pest management. Hortic. Entomol. 2022, 49–79. [Google Scholar]
- Yuwen, L.; Zhang, S.; Chao, J. Recent advances in DNA nanotechnology-enabled biosensors for virus detection. Biosensors. 2023, 13, 822. [Google Scholar] [CrossRef]
- Do Espirito Santo Pereira, A.; Caixeta Oliveira, H.; Fernandes Fraceto, L.; Santaella, C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021, 11, 267. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of nanotechnology in medical field: a brief review. GHJ. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; da Silva, S.S. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol. Rev. 2018, 7, 303–315. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Zhang, P.; Zhou, P.; Wu, Z.; Lou, B.; Tan, Z. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NanoImpact. 2022, 28, 100420. [Google Scholar] [CrossRef]
- Shilova, O.A.; Panova, G.; Nikolaev, A.; Kovalenko, A.; Sinelnikov, A.; Kopitsa, G.; Khamova, T. Aqueous chemical co-precipitation of iron oxide magnetic nanoparticles for use in agricultural technologies. Appl. NanoBioSci. 2021, 10, 2215–2239. [Google Scholar]
- Haydar, M.S.; Ghosh, D.; Roy, S. Slow and controlled release nanofertilizers as an efficient tool for sustainable agriculture: Recent understanding and concerns. Plant Nano Biol. 2024, 100058. [Google Scholar] [CrossRef]
- Yao, D.; Ranadheera, C.S.; Shen, C.; Wei, W.; Cheong, L.Z. Milk fat globule membrane: Composition, production and its potential as encapsulant for bioactives and probiotics. Crit Rev Food Sci Nutr. 2024, 64, 12336–12351. [Google Scholar] [CrossRef] [PubMed]
- Das, D.N.; Paul, D.; Mondal, S. Role of biotechnology on animal breeding and genetic improvement. Int. J. Livest. Prod.. 2022, 317–337. [Google Scholar]
- Nongbet, A.; Mishra, A.K.; Mohanta, Y.K.; Mahanta, S.; Ray, M.K.; Khan, M.; Chakrabartty, I. Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants. 2022, 11, 2587. [Google Scholar] [CrossRef]
- Leon-Buitimea, A.; Garza-Cervantes, J.A.; Gallegos-Alvarado, D.Y.; Osorio-Concepción, M.; Morones-Ramírez, J.R. Nanomaterial-based antifungal therapies to combat fungal diseases aspergillosis, Coccidioidomycosis, Mucormycosis, and candidiasis. Pathogens. 2021, 10, 1303. [Google Scholar] [CrossRef]
- Michalak, I.; Dziergowska, K.; Alagawany, M.; Farag, M.R.; El-Shall, N.A.; Tuli, H.S.; Dhama, K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet. Q. 2022, 42, 68–94. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; ur Rehman, H.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Bhavanee, K.D.; Krishnamoorthi, A.; Rathva, H.M.; Mareguddikar, S.C.; Singh, A.; Singh, B.P.; Chittibomma, K. Advancements in Genetic Engineering for Enhanced Traits in Horticulture Crops: A Comprehensive Review. J. adv. biol. biotechnol. 2024, 27, 90–110. [Google Scholar] [CrossRef]
- Baltes, N.J.; Gil-Humanes, J.; Voytas, D.F. Genome engineering and agriculture: opportunities and challenges. Prog Mol Biol Transl Sci. 2017, 149, 1–26. [Google Scholar]
- Ledesma, A.V.; Van Eenennaam, A.L. Global status of gene edited animals for agricultural applications. Vet. J. 2024, 305, 106142. [Google Scholar] [CrossRef]
- Ho, M.W. The new genetics and natural versus artificial genetic modification. Entropy. 2013, 15, 4748–4781. [Google Scholar] [CrossRef]
- Lallawmkimi, M.C.; Veda, D.S.; Yadav, A.; Kumar, M.; Rout, A. Innovative Approaches in Crop Genetic Engineering for Sustainable Agriculture. J.adv. biol. biotechnol. 2024, 27, 615–631. [Google Scholar] [CrossRef]
- Wolter, F.; Schindele, P.; Puchta, H. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol. 2019, 19, 176. [Google Scholar] [CrossRef] [PubMed]
- Werner, B.T.; Gaffar, F.Y.; Schuemann, J.; Biedenkopf, D.; Koch, A.M. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance. Front. Plant Sci. 2020, 11, 476. [Google Scholar] [CrossRef]
- Povolotsky, T.L.; Barazany, H.L.; Shacham, Y.; Kolodkin-Gal, I. Bacterial epigenetics and its implication for agriculture, probiotics development, and biotechnology design. Biotechnol. Adv. 2024, 108414. [Google Scholar] [CrossRef]
- Dong, J.; Yu, X.H. , Dong, J.; Wang, G.H.; Wang, X.L.; Wang, D.W.; Yang, G.F. An artificially evolved gene for herbicide-resistant rice breeding. PNAS. 2024, 121, e2407285121. [Google Scholar] [CrossRef]
- Douglas, A.E. Strategies for enhanced crop resistance to insect pests. Annu. Rev. Plant Biol. 2018, 69, 637–660. [Google Scholar] [CrossRef]
- Olatunji, A.O.; Olaboye, J.A.; Maha, C.C.; Kolawole, T.O.; Abdul, S. Next-Generation strategies to combat antimicrobial resistance: Integrating genomics, CRISPR, and novel therapeutics for effective treatment. Eng. Sci. Technol. 2024, 5, 2284–2303. [Google Scholar] [CrossRef]
- Sun, W.; Xia, L.; Deng, J.; Sun, S.; Yue, D.; You, J.; Yang, X. Evolution and subfunctionalization of CIPK6 homologous genes in regulating cotton drought resistance. Nat. Commun. 2024, 15, 5733. [Google Scholar] [CrossRef]
- Ismail, A.M.; Horie, T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 2017, 68, 405–434. [Google Scholar] [CrossRef]
- Bhat, K.A.; Mahajan, R.; Pakhtoon, M.M.; Urwat, U.; Bashir, Z.; Shah, A.A.; Zargar, S.M. Low temperature stress tolerance: An insight into the omics approaches for legume crops. Front. Plant Sci. 2022, 13, 888710. [Google Scholar] [CrossRef] [PubMed]
- Qaim, M. Role of new plant breeding technologies for food security and sustainable agricultural development. AEPP. 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Chamara, R.M.S.R.; Senevirathne, S.M.P.; Samarasinghe, S.A.I.L.N. , Premasiri, M.W.R.C.; Sandaruwani, K.H.C.; Dissanayake, D.M.N.N.; Marambe, B. Role of artificial intelligence in achieving global food security: a promising technology for future. SLJFA. 2020, 6. [Google Scholar]
- Diószegi, J.; Llanaj, E.; Ádány, R. Genetic background of taste perception, taste preferences, and its nutritional implications: a systematic review. Front. Genet. 2019, 10, 1272. [Google Scholar] [CrossRef]
- Verma, V.; Kumar, A.; Partap, M.; Thakur, M.; Bhargava, B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. Front. Plant Sci. 2023, 14, 1122940. [Google Scholar] [CrossRef]
- Malook, M.B.; Aslam, S.; Ammar, A. Plant Pathology in Genome Era New Insight into Disease Resistance. Int. J. Res. Adv. Agric. Sci. 2023, 2, 27–38. [Google Scholar]
- Mc Cartney, A.M.; Formenti, G.; Mouton, A.; De Panis, D.; Marins, L.S.; Leitão, H.G.; Pellicer, J. The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics. npj Biodiversity. 2024, 3, 28. [Google Scholar] [CrossRef]
- Padhiary, M.; Hoque, A.; Prasad, G.; Kumar, K.; Sahu, B. Precision Agriculture and AI-Driven Resource Optimization for Sustainable Land and Resource Management. J. Sustain. Manag. 2025, 197–232. [Google Scholar]
- Bradshaw, J.E.; Bradshaw, J.E. Gene Editing and Genetic Transformation of Potatoes. Th. Pract. 2021, 505–551. [Google Scholar]
- M. J.; Scanaill, C.N.; McGrath, M.J.; Scanaill, C.N. Sensing and sensor fundamentals. Environ. Res. 2013, 15–50. [Google Scholar]
- Liu, Y.; Ma, X. , Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Trans. Industr. Inform. 2020, 17, 4322–4334. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Najdenko, E.; Lorenz, F.; Dittert, K.; Olfs, H.W. Rapid in-field soil analysis of plant-available nutrients and pH for precision agriculture. Precis. Agric. 2024, 25, 3189–3218. [Google Scholar] [CrossRef]
- Beyaz, A.; Gül, V. Determination of low-cost arduino based light intensity sensors effectiveness for agricultural applications. Braz Arch Biol Technol. 2022, 65, e22220172. [Google Scholar] [CrossRef]
- Love, C.; Nazemi, H.; El-Masri, E.; Ambrose, K.; Freund, M.S.; Emadi, A. A review on advanced sensing materials for agricultural gas sensors. Sensors. 2021, 21, 3423. [Google Scholar] [CrossRef]
- Rathod, N.; Panigrahi, S.; Pinjarkar, V. Smart farming: IoT based smart sensor agriculture stick for live temperature and humidity monitoring. Int. J. Eng. Res. 2020, 9. [Google Scholar]
- Allan, J.T.; Rahman, M.R.; Easton, E.B. The influence of relative humidity on the performance of fuel cell catalyst layers in ethanol sensors. Sens. Actuators B: Chem. 2017, 239, 120–130. [Google Scholar] [CrossRef]
- Lloret, J.; Sendra, S.; Garcia, L.; Jimenez, J.M. A wireless sensor network deployment for soil moisture monitoring in precision agriculture. Sensors. 2021, 21, 7243. [Google Scholar] [CrossRef]
- Champagne, C.; White, J.; Berg, A.; Belair, S.; Carrera, M. Impact of soil moisture data characteristics on the sensitivity to crop yields under drought and excess moisture conditions. Remote Sens. 2019, 11, 372. [Google Scholar] [CrossRef]
- Bhadani, P.; Vashisht, V. Soil moisture, temperature and humidity measurement using arduino. Data Sci. Eng. 2019, 567–571. [Google Scholar]
- Dudala, S.; Dubey, S.K.; Goel, S. Microfluidic soil nutrient detection system: integrating nitrite, pH, and electrical conductivity detection. IEEE Sens. J. 2020, 20, 4504–4511. [Google Scholar] [CrossRef]
- Telaumbanua, M.; Triyono, S.; Haryanto, A.; Wisnu, F.K. Controlled electrical conductivity (EC) of tofu wastewater as a hydroponic nutrition. Procedia Environ. Sci. 2019, 6, 453–462. [Google Scholar]
- Gao, P.; Xie, J.; Yang, M.; Zhou, P.; Chen, W.; Liang, G.; Wang, W. Improved soil moisture and electrical conductivity prediction of citrus orchards based on IoT using deep bidirectional LSTM. Agric. 2021, 11, 635. [Google Scholar] [CrossRef]
- Shahab, H.; Naeem, M.; Iqbal, M.; Aqeel, M.; Ullah, S.S. IoT-Driven Smart Agricultural Technology for Real-Time Soil and Crop Optimization. Smart Agric Technol. 2025, 100847. [Google Scholar] [CrossRef]
- Ramya, R.; Sandhya, C.; Shwetha, R. Smart farming systems using sensors. IEEE Tech. Innov. 2017, 218–222. [Google Scholar]
- Yu, S.; Liu, X.; Tan, Q.; Wang, Z.; Zhang, B. Sensors, systems and algorithms of 3D reconstruction for smart agriculture and precision farming. Comput. Electron. Agric. 2024, 224, 109229. [Google Scholar] [CrossRef]
- Mohagheghi, A.; Moallem, M. An energy-efficient PAR-based horticultural lighting system for greenhouse cultivation of lettuce. IEEE Access. 2023, 11, 8834–8844. [Google Scholar] [CrossRef]
- Fan, X.; Cao, X.; Zhou, H.; Hao, L.; Dong, W.; He, C.; Zheng, Y. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.). Environ. Exp. Bot. 1042. [Google Scholar]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef]
- Neethirajan, S.; Freund, M.S.; Jayas, D.S.; Shafai, C.; Thomson, D.J.; White, N.D.G. Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosyst. Eng. 2010, 106, 395–404. [Google Scholar] [CrossRef]
- Wang, J.; Niu, X.; Zheng, L.; Zheng, C.; Wang, Y. Wireless mid-infrared spectroscopy sensor network for automatic carbon dioxide fertilization in a greenhouse environment. Sensors. 2016, 16, 1941. [Google Scholar] [CrossRef] [PubMed]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C. Incorporating artificial intelligence technology in smart greenhouses: Current State of the Art. Appl. Sci. 2022, 13, 14. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Deng, L.; Bozdar, B.; Li, J.; Chachar, S.; Tu, P. Advancing horizons in vegetable cultivation: a journey from ageold practices to high-tech greenhouse cultivation. Front. Plant Sci. 2024, 15, 1357153. [Google Scholar] [CrossRef]
- Villagran, E.; Toro-Tobón, G.; Velázquez, F.A.; Estrada-Bonilla, G.A. Integration of IoT Technologies and High-Performance Phenotyping for Climate Control in Greenhouses and Mitigation of Water Deficit: A Study of High-Andean Oat. AgriEngineering. 2024, 6, 4011–4040. [Google Scholar] [CrossRef]
- Teslyuk, V.; Tsmots, I.; Teslyuk, T.; Kazymyra, I. Methods for the Efficient Energy Management in a Smart Mini Greenhouse. CMC. 2022, 70. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Q.; Wu, Y.; Chen, M.; Yin, H.; Zhao, J. Edible mushroom greenhouse environment prediction model based on attention cnn-lstm. Agronomy. 2024, 14, 473. [Google Scholar] [CrossRef]
- Ziapour, B.M.; Dehnavi, R. A numerical study of the arc-roof and the one-sided roof enclosures based on the entropy generation minimization. Math. Appl. 2012, 64, 1636–1648. [Google Scholar] [CrossRef]
- Ziapour, B.M.; Dehnavi, R. Heat transfer in a large triangular-roof enclosure based on the second law analysis. Int. J. Heat Mass Transf. 2015, 51, 931–940. [Google Scholar] [CrossRef]
- Soleimani, Z.; Calautit, J.K.; Hughes, B.R. Computational analysis of natural ventilation flows in geodesic dome building in hot climates. Computation. 2016, 4, 31. [Google Scholar] [CrossRef]
- Oruma, S.O.; Misra, S.; Fernandez-Sanz, L. Agriculture 4.0: an implementation framework for food security attainment in Nigeria’s post-Covid-19 era. Ieee Access. 2021, 9, 83592–83627. [Google Scholar] [CrossRef]
- Farooqui, N.A.; Haleem, M.; Khan, W.; Ishrat, M. Precision agriculture and predictive analytics: Enhancing agricultural efficiency and yield. Int. J. Intell. Technol. 2024, 171–188. [Google Scholar]
- Ray, P.P. Internet of things for smart agriculture: Technologies, practices and future direction. J. Ambient Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.D.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Bhardwaj, H.; Tomar, P.; Sakalle, A.; Sharma, U. Artificial intelligence and its applications in agriculture with the future of smart agriculture techniques. J. Artif. Intell. 2021, 25–39. [Google Scholar]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020, 10, 207. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int J Intell Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Kashif, M.; Fati, S.M.; Bahaj, S.A.; Chaudhry, H. A revisit of internet of things technologies for monitoring and control strategies in smart agriculture. Agronomy. 2022, 12, 127. [Google Scholar] [CrossRef]
- Gyamfi, E.K.; ElSayed, Z.; Kropczynski, J.; Yakubu, M.A.; Elsayed, N. (2024). Agricultural 4.0 Leveraging on Technological Solutions: Study for Smart Farming Sector. arXiv. 2024, 2401, 00814. [Google Scholar]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture. 2022, 12, 1745. [Google Scholar] [CrossRef]
- Kumar, P.; Udayakumar, A.; Anbarasa Kumar, A.; Senthamarai Kannan, K.; Krishnan, N. Multiparameter optimization system with DCNN in precision agriculture for advanced irrigation planning and scheduling based on soil moisture estimation. Environ. Monit. Assess. 2023, 195, 13. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Pham, C.D.; Nguyen, T.P.T.; Nguyen, T.L.; Nguyen, Q.C.; Hoang, N.B.; Nghiem, L.D. Wireless Powered Moisture Sensors for Smart Agriculture and Pollution Prevention: Opportunities, Challenges, and Future Outlook. Curr. Pollut. Rep. 2023, 9, 646–659. [Google Scholar] [CrossRef]
- Lavanya, G.; Rani, C.; GaneshKumar, P. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustain. Comput. Informatics Syst. 2020, 28, 100300. [Google Scholar]
- Hassan, S.I.; Alam, M.M.; Illahi, U.; Al Ghamdi, M.A.; Almotiri, S.H.; Su’ud, M.M. A systematic review on monitoring and advanced control strategies in smart agriculture. Ieee Access. 2021, 9, 32517–32548. [Google Scholar] [CrossRef]
- Frona, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability. 2019, 11, 5816. [Google Scholar] [CrossRef]
- Girsang, C.I. The Role of Information Technology in Improving Resource Management Efficiency in Sustainable Agriculture. Sustainability. 2023, 12, 1698–1712. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. , Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int J Intell Netw. 2022, 3, 150–164. [Google Scholar]
- Cordeiro, M.; Fernandes, V.; Curado, J.; Ferreira, J.C. Enhancing Agriculture Products Traceability towards Sustainability. JNIC. 2024, 12, 15–35. [Google Scholar]
- Singh, R.K.; Berkvens, R.; Weyn, M. AgriFusion: An architecture for IoT and emerging technologies based on a precision agriculture survey. IEEE Access. 2021, 9, 136253–136283. [Google Scholar] [CrossRef]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access. 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Mason, A.; Haidegger, T.; Alvseike, O. Time for change: the case of robotic food processing [industry activities]. IEEE Robot. Automat. Mag. 2023, 30, 116–122. [Google Scholar] [CrossRef]
- Van der Burg, S.; Giesbers, E.; Bogaardt, M.J.; Ouweltjes, W.; Lokhorst, K. Ethical aspects of AI robots for agri-food; a relational approach based on four case studies. AI Soc. 2024, 39, 541–555. [Google Scholar] [CrossRef]
- Rai, A.K.; Kumar, N.; Katiyar, D.; Singh, O.; Sreekumar, G.; Verma, P. Unlocking productivity potential: the promising role of agricultural robots in enhancing farming efficiency. Int. J. Plant Soil Sci. 2023, 35, 624–633. [Google Scholar] [CrossRef]
- Petrović, B.; Bumbálek, R.; Zoubek, T.; Kuneš, R.; Smutný, L.; Bartoš, P. Application of precision agriculture technologies in Central Europe-review. J AGR FOOD RES. 2024, 101048. [Google Scholar] [CrossRef]
- Arabi Aliabad, F.; Ghafarian Malamiri, H.; Sarsangi, A.; Sekertekin, A.; Ghaderpour, E. Identifying and Monitoring Gardens in Urban Areas Using Aerial and Satellite Imagery. Remote Sens. 2023, 15, 4053. [Google Scholar] [CrossRef]
- Ahirwar, S. ; R. ; Swarnkar, S. Bhukya, and G. Namwade. Application of drone in agricultureInt. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2500–2505. [Google Scholar]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Soni, S.K. Implementation of drone technology for farm monitoring & pesticide spraying. Inf. Process. Agric. 2023, 10, 192–203. [Google Scholar]
- Pathak, H.; Kumar, G.; Mohapatra, S.D.; Gaikwad, B.B.; Rane, J. Use of drones in agriculture: Potentials, Problems and Policy Needs. ICAR. 2020, 300, 4–15. [Google Scholar]
- Rejeb, A. , Abdollahi, A., Rejeb, K., & Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Computers and electronics in agriculture 2022, 198, 107017. [Google Scholar]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Jabran, K.; Ul-Allah, S.; Chauhan, B.S.; Bakhsh, A. An introduction to global production trends and uses, history and evolution, and genetic and biotechnological improvements in cotton. J. Cotton Sci. 2019, 1–22. [Google Scholar]
- Farooq, U.; Shafi, A.; Shahbaz, M.; Khan, M.Z.; Hayat, K.; Baqir, M.; Iqbal, M. Food quality and food safety: An introduction. In Seq. Technol. 2021, 3–24. [Google Scholar]
- Chen, C.; Chen, H.; Chen, Y.; Yang, W.; Li, M.; Sun, B.; Gong, R. Joint metabolome and transcriptome analysis of the effects of exogenous GA3 on endogenous hormones in sweet cherry and mining of potential regulatory genes. Front. Plant Sci. 2022, 13, 1041068. [Google Scholar] [CrossRef]
- Reineke, W.; Schlömann, M. Biotechnology and environmental protection. Environ. Microbiol. 2023, 551–587. [Google Scholar]
- Oklander, M.; Yashkina, O.; Petryshchenko, N.; Karandin, O.; Yevdokimova, O. Economic aspects of Industry 4.0 marketing technologies implementation in the agricultural sector of Ukraine. Ekon. 2024, 31, 55–66. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar]
- Collett, Stephen R.; John A.; Smith, Martine Boulianne, Robert L. Owen, Eric Gingerich, Randall S. Singer, Timothy J. Johnson, Charles L. Hofacre, Roy D. Berghaus, and Bruce Stewart-Brown. Principles of disease prevention, diagnosis, and control. Avian Dis.
- Lakhiar. ; Imran Ali.; Haofang Yan.; Jianyun Zhang.; Guoqing Wang.; Shuaishuai Deng.; Rongxuan Bao.; Chuan Zhang. Plastic pollution in agriculture as a threat to food security, the ecosystem, and the environment: an overview. Agronomy. 2024, 3, 548. [Google Scholar]
- Xin, X.; Judy, J.D.; Sumerlin, B.B.; He, Z. Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. . Environ. Chem. 2020, 17, 413–425. [Google Scholar] [CrossRef]
- Vahid Afagh. ; Haideh.; Sara Saadatmand.; Hossein Riahi.; Ramazan Ali Khavari-Nejad. Effects of leached spent mushroom compost (LSMC) on the yield, essential oil composition and antioxidant compounds of German Chamomile. J. Essent. Oil-Bear. Plants. 2018, 6, 1436–1449. [Google Scholar]
- Bhat, S.A.; Huang, N.F. Big data and ai revolution in precision agriculture: Survey and challenges. Ieee Access. 2021, 9, 110209–110222. [Google Scholar] [CrossRef]
- Dhanaraju. ; Muthumanickam.; Poongodi Chenniappan.; Kumaraperumal Ramalingam.; Sellaperumal Pazhanivelan.; Ragunath Kaliaperumal. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture. 2022, 12, 1745. [Google Scholar] [CrossRef]
- Das. ; Subrata.; Manvir Kaur.; Vandna Chhabra.; Titli Nandi.; Purba Mishra.; Sriman Ghosh. A Systematic Review of Artificial Intelligence: A Future Guide to Sustainable Agriculture. Int. J. Environ. Clim. Chang. 2024, 14, 562–573. [Google Scholar] [CrossRef]
- Kurunathan.; Harrison.; Hailong Huang.; Kai Li.; Wei Ni.; Ekram Hossain. Machine learning-aided operations and communications of unmanned aerial vehicles: A contemporary survey. IEEE Commun. Surv. Tutor.
- Bonds, J.A.; Pai, N.; Hovinga, S.; Stump, K.; Haynie, R.; Flack, S.; Bui, T. Spray drift, operator exposure, crop residue and efficacy: early indications for equivalency of uncrewed aerial spray systems with conventional application techniques. J. ASABE. 2024, 67, 27–41. [Google Scholar] [CrossRef]
- Saiz-Rubio. ; Verónica.; Francisco Rovira-Más. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy. 2020, 10, 207. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar]
- Singh, A.; Mehrotra, R.; Rajput, V.D.; Dmitriev, P.; Singh, A.K.; Kumar, P.; Singh, A.K. Geoinformatics, artificial intelligence, sensor technology, big data: emerging modern tools for sustainable agriculture. Sustain. Agric. Syst. Technol. 2022, 295–313. [Google Scholar]
- Paul, K.; Chatterjee, S.S.; Pai, P.; Varshney, A.; Juikar, S.; Prasad, V.; Dasgupta, S. Viable smart sensors and their application in data driven agriculture. Comput. Electron. Agric. 2022, 198, 107096. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEe Access. 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhang, L.; Xu, J.; Xiao, X.; Zhang, X. Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective. Mater. Today Commun. 2022, 31, 103263. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Tyagi, S.K.S.; Suryadevara, N.K.; Piuri, V.; Scotti, F.; Zeadally, S. Artificial intelligence-based sensors for next generation IoT applications: A review. IEEE Sens. J. 2021, 21, 24920–24932. [Google Scholar] [CrossRef]
- Maraveas, C. (2022). Incorporating artificial intelligence technology in smart greenhouses: Current State of the Art. Appl. Sci. 2022, 13, 14. [Google Scholar] [CrossRef]
- Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. (2020). Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Appl. Sci. 2020, 10, 3835. [Google Scholar] [CrossRef]
- Yang, L.; Huang, B.; Mao, M.; Yao, L.; Niedermann, S.; Hu, W.; Chen, Y. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China. Environ. Sci. Pollut. Res. 2016, 23, 17287–17297. [Google Scholar] [CrossRef]
- Ghiasi, M.; Wang, Z.; Mehrandezh, M.; Paranjape, R. A systematic review of optimal and practical methods in design, construction, control, energy management and operation of smart greenhouses. IEEE Access. 2023, 12, 2830–2853. [Google Scholar] [CrossRef]
- Olawepo, S.; Adebiyi, A.; Adebiyi, M.; Okesola, O. An overview of smart garden automation. ICMCECS. 2020, 1–6. [Google Scholar]
- Adesipo, A.; Fadeyi, O.; Kuca, K.; Krejcar, O.; Maresova, P.; Selamat, A.; Adenola, M. Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors. 2020, 20, 5977. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
