Preprint
Article

This version is not peer-reviewed.

Noncommutative Equiangular Lines: van Lint-Seidel Relative and Gerzon Universal Bounds

Submitted:

12 April 2025

Posted:

15 April 2025

Read the latest preprint version here

Abstract
We introduce the notion of noncommutative equiangular lines and derive noncommutative versions of fundamental van Lint-Seidel relative and Gerzon universal bounds.
Keywords: 
;  ;  

1. Introduction

Let d N and γ [ 0 , 1 ] . Recall that a collection { τ j } j = 1 n of unit vectors in R d or C d is said to be γ -equiangular lines [1,2] if
| τ j , τ k | = γ , 1 j , k n , j k .
Two fundamental problems associated with equiangular lines are the following.
Problem 1. Given d N and γ [ 0 , 1 ] , what is the upper bound on n such that there exists a collection { τ j } j = 1 n of γ -equiangular lines in R d ?
Problem 2. For which parameters d , n N and γ [ 0 , 1 ] , there exists a collection { τ j } j = 1 n of γ -equiangular lines in R d ? If exists, how to construct them?
Two answers to Problem (1) which are fundamental driving force in the study of equiangular lines are the following results of van Lint and Seidel [1,3] and Gerzon [4].
Theorem 1.
[1,3,5,6] (van Lint-Seidel Relative Bound) Let { τ j } j = 1 n be γ-equiangular lines in R d or C d . Then
n ( 1 d γ 2 ) d ( 1 γ 2 ) .
In particular, if
γ < 1 d ,
then
n d ( 1 γ 2 ) 1 d γ 2 .
Theorem 2.
[4] (Gerzon Universal Bound)
Theorem 3.
((i)).
Let { τ j } j = 1 n be γ-equiangular lines in R d . Then
n d ( d + 1 ) 2 .
Let { τ j } j = 1 n be γ-equiangular lines in C d . Then
n d 2 .
Bounds in Inequalities (1), (2) and (3) are improved for various special values of γ , n and d (including asymptotic). Regarding Problem (2), various special cases are solved but full generality remains open. We refer [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] for a look on these achievements in the real case and [31,32,33,34,35,36,37] in the complex case. In the real case, it is known that equality is not always attained for every d in Inequality (2). Celebrated Zauner conjecture says that there exists a d 2 1 d + 1 -equiangular lines in C d for every d satisfying equality in Inequality (3) [38,39,40,41,42,43,44].
We wish to record that there is a vector space version of equiangular lines [45,46] and there is also a notion of equiangular subspaces of Euclidean spaces [47,48]. Recently, p-adic version of equiangular lines have been introduced [49].
As noncommutative geometry plays major role in modern Mathematics, our fundamental objective is to initiate a study of noncommutative equiangular lines. As most important results in the theory of equiangular lines are van Lint-Seidel relative and Gerzon universal bounds, we derive noncommutative versions of them.

2. Noncommutative Equiangular Lines

We want the notion of Hilbert C*-modules. They are first introduced by Kaplansky [50] for modules over commutative C*-algebras and later developed for modules over arbitrary C*-algebras by Paschke [51] and Rieffel [52]. A friendly introduction is given in the book [53]. We want only standard Hilbert C*-module. Let A be a unital C*-algebra with identity 1. For d N , let A d be the standard left Hilbert C*-module over A with inner product
( a j ) j = 1 d , ( b j ) j = 1 d j = 1 d a j b j * , ( a j ) j = 1 d , ( b j ) j = 1 d A d .
Hence norm on A d is
( a j ) j = 1 d 2 j = 1 d a j a j * 1 2 , ( a j ) j = 1 d A d .
We introduce two notions of equiangular lines for modules.
Definition 1.
Let a A be a positive element. A collection { τ j } j = 1 n in A d is said to be  modular a-equiangular lines  if following conditions hold.
Theorem 4.
((i)).
τ j , τ j = 1 , 1 j n .
τ j , τ k τ k , τ j = a , 1 j , k n , j k .
Definition 2.
Let γ [ 0 , 1 ] . A collection { τ j } j = 1 n in A d is said to be modular γ -norm-equiangular lines  if following conditions hold.
Theorem 5.
((i)).
τ j , τ j = 1 , 1 j n .
τ j , τ k = γ , 1 j , k n , j k .
It is clear that if { τ j } j = 1 n is modular a-equiangular lines, then { τ j } j = 1 n is modular a -norm-equiangular lines. We now derive two modular versions of Theorem 1 for modules over commutative C*-algebras.
Theorem 6.
(Modular van Lint-Seidel Relative Bound) Let A be a commutative unital C*-algebra. Let { τ j } j = 1 n be modular a-equiangular lines in A d . Then
n ( 1 d a ) d ( 1 a ) .
In particular, if 1 d a is invertible, then
n d ( 1 a ) 1 d a d 1 a 1 d a .
Proof. 
Let τ j ( a 1 ( j ) , a 2 ( j ) , , a d ( j ) ) for all 1 j n . Define
B j = 1 n k = 1 n τ j , τ k τ k , τ j = n + ( n 2 n ) a .
Then using Cauchy-Schwarz inequality in Hilbert C*-modules,
B = j = 1 n k = 1 n r = 1 d a r ( j ) ( a r ( k ) ) * s = 1 d a s ( k ) ( a s ( j ) ) * = r , s = 1 d j = 1 n a r ( j ) ( a s ( j ) ) * k = 1 n a r ( k ) ( a s ( k ) ) * * = r = 1 d j = 1 n a r ( j ) ( a r ( j ) ) * k = 1 n a r ( k ) ( a r ( k ) ) * * + r , s = 1 , r s d j = 1 n a r ( j ) ( a s ( j ) ) * k = 1 n a r ( k ) ( a s ( k ) ) * * r = 1 d j = 1 n a r ( j ) ( a r ( j ) ) * k = 1 n a r ( k ) ( a r ( k ) ) * * 1 d r = 1 d j = 1 n a r ( j ) ( a r ( j ) ) * · 1 s = 1 d 1 · k = 1 n a s ( k ) ( a s ( k ) ) * * = 1 d j = 1 n r = 1 d a r ( j ) ( a r ( j ) ) * k = 1 n s = 1 d a s ( k ) ( a s ( k ) ) * = 1 d j = 1 n 1 k = 1 n 1 = n 2 d .
Hence
( n 1 ) a + 1 n d d ( n 1 ) a + d n d ( 1 a ) n ( 1 d a ) .
Theorem 7.
Let A be a commutative unital C*-algebra. Let { τ j } j = 1 n be modular γ-norm-equiangular lines in A d . Then
n ( 1 d γ 2 ) d ( 1 γ 2 ) .
In particular, if
γ < 1 d ,
then
n d ( 1 γ 2 ) 1 d γ 2 .
Proof. 
By using the proof of Theorem 6,
n 2 d j = 1 n k = 1 n τ j , τ k τ k , τ j = j , k = 1 , j k n τ j , τ k τ k , τ j + j = 1 n τ j , τ j 2 = j , k = 1 , j k n τ j , τ k τ k , τ j + n j , k = 1 , j k n τ j , τ k 2 + n = ( n 2 n ) γ 2 + n .
Proof of previous theorems used commutativity of C*-algebra. We are unable to derive noncommutative versions of them. However, we introduce a subclass of norm-equiangular lines for which we derive modular relative bound.
Definition 3.
Let γ [ 0 , 1 ] . A collection { τ j } j = 1 n in A d is said to be  special modular γ -norm-equiangular lines  if following conditions hold.
Theorem 8.
((i)).
τ j , τ j = 1 , 1 j n .
τ j , τ k = γ , 1 j , k n , j k .
n 2 d j = 1 n k = 1 n τ j , τ k τ k , τ j .
Theorem 9.
(Noncommutative van Lint-Seidel Relative Bound) Let A be a unital C*-algebra. Let { τ j } j = 1 n be special modular γ-norm-equiangular lines in A d . Then
n ( 1 d γ 2 ) d ( 1 γ 2 ) .
In particular, if γ < d 1 , then
n d ( 1 γ 2 ) 1 d γ 2 .
Proof. 
n 2 d j = 1 n k = 1 n τ j , τ k τ k , τ j ( n 2 n ) γ 2 + n .
Next we derive modular Gerzon bound for modules over C*-algebras with invariant basis number (IBN) property. These C*-algebras are studied in [54].
Theorem 10.
(Modular Gerzon Universal Bound) Let A be a unital C*-algebra with IBN. Let { τ j } j = 1 n be modular a-equiangular lines in A d . If 1 a is invertible, then
n d 2 .
Proof. 
For 1 j n , define
τ j τ j : A d x ( τ j τ j ) x x , τ j τ j A d .
We show that the collection { τ j τ j } j = 1 n is linearly independent over A . Let c 1 , , c n A be such that
j = 1 n c j ( τ j τ j ) = 0 .
Let 1 k n be fixed. Then previous equation gives
0 = j = 1 n c j ( τ j τ j ) τ k = j = 1 n c j τ k , τ j τ j .
Taking inner product with τ k gives
0 = j = 1 n c j τ k , τ j τ j , τ k = j = 1 , j k n c j τ k , τ j τ j , τ k + c k τ k , τ k 2 = j = 1 , j k n c j a + c k = j = 1 n c j a c k a + c k = j = 1 n c j a + c k ( 1 a ) .
Now define
c 1 1 a j = 1 n c j a .
Then c k = c for all 1 k n . We wish to show that c = 0 . Now Equation (5) gives
0 = j = 1 n c ( τ j τ j ) .
Let 1 k n be fixed. Then previous equation gives
0 = j = 1 n c ( τ j τ j ) τ k = j = 1 n c τ k , τ j τ j .
Taking inner product with τ k gives
0 = j = 1 n c τ k , τ j τ j , τ k = j = 1 , j k n c τ k , τ j τ j , τ k + c τ k , τ k 2 = j = 1 , j k n c a + c = ( n 1 ) c a + c = c ( ( n 1 ) a + 1 ) .
Since a 0 , ( ( n 1 ) a + 1 ) is invertible, hence c = 0 . Note that the matrix of τ j τ j is τ j τ j * (viewing τ j as column vector). The rank of d by d matrices over A is d 2 . Since { τ j τ j } j = 1 n is linearly independent and A has IBN property, n d 2 . □
We can slightly generalize Definition 1. In the vector space case, such a generalization was done by Greaves, Iverson, Jasper and Mixon [46].
Definition 4.
Let a , b A be positive elements. A collection { τ j } j = 1 n in A d is said to be  modular ( a , b ) -equiangular lines  if following conditions hold.
Theorem 11.
((i)).
τ j , τ j = b , 1 j n .
τ j , τ k τ k , τ j = a , 1 j , k n , j k .
Note that b is necessarily positive but need not be invertible. Thus we may not able to reduce Definition 4 to Definition 1. By modifying earlier proofs, we easily get following theorems.
Theorem 12.
Let A be a commutative unital C*-algebra. Let { τ j } j = 1 n be modular ( a , b ) -equiangular lines in A d . Then
n ( b 2 d a ) d ( b a ) .
In particular, if b 2 d a is invertible, then
n d ( b a ) b 2 d a d b a b 2 d a .
Theorem 13.
Let A be a unital C*-algebra with IBN. Let { τ j } j = 1 n be modular ( a , b ) -equiangular lines in A d . If b 2 a and ( n 1 ) a + b 2 are invertible, then
n d 2 .
Similar to scalar equiangular lines and Zauner conjecture, we formulate following problem.
Problem 3. Let A be a unital C*-algebra. For which parameters d , n N and a A , there exists a collection { τ j } j = 1 n of modular a-equiangular lines in A d ? In particular, for which d/for all d, there is d 2 modular 1 d + 1 -equiangular lines in A d (making equality in Inequality (4))?
Note that Problem 3 contains Zauner conjecture (whenever A = C ).

Acknowledgments

This paper has been partially developed when the author attended the workshop “Quantum groups, tensor categories and quantum field theory”, held in the University of Oslo, Norway from January 13 to 17, 2025. This event was organized by the University of Oslo, Norway and funded by the Norwegian Research Council through the “Quantum Symmetry” project.

References

  1. Lemmens, P.W.H.; Seidel, J.J. Equiangular lines. J. Algebra 1973, 24, 494–512. [Google Scholar] [CrossRef]
  2. Haantjes, J. Equilateral point-sets in elliptic two- and three-dimensional spaces. Nieuw Arch. Wiskunde (2) 1948, 22, 355–362. [Google Scholar]
  3. van Lint, J.H.; Seidel, J.J. Equilateral point sets in elliptic geometry. Indag. Math. 1966, 28, 335–348. [Google Scholar] [CrossRef]
  4. Waldron, S.F.D. An introduction to finite tight frames; Applied and Numerical Harmonic Analysis, Birkhäuser/Springer: New York, 2018; p. xx+587. [Google Scholar] [CrossRef]
  5. Glazyrin, A.; Yu, W.H. Upper bounds for s-distance sets and equiangular lines. Adv. Math. 2018, 330, 810–833. [Google Scholar] [CrossRef]
  6. Godsil, C.; Royle, G. Algebraic graph theory; Graduate Texts in Mathematics; Springer-Verlag: New York, 2001; Vol. 207, p. xx+439. [Google Scholar] [CrossRef]
  7. Bukh, B. Bounds on equiangular lines and on related spherical codes. SIAM J. Discrete Math. 2016, 30, 549–554. [Google Scholar] [CrossRef]
  8. Jiang, Z.; Tidor, J.; Yao, Y.; Zhang, S.; Zhao, Y. Equiangular lines with a fixed angle. Ann. of Math. (2) 2021, 194, 729–743. [Google Scholar] [CrossRef]
  9. Balla, I.; Dräxler, F.; Keevash, P.; Sudakov, B. Equiangular lines and spherical codes in Euclidean space. Invent. Math. 2018, 211, 179–212. [Google Scholar] [CrossRef]
  10. Barg, A.; Yu, W.H. New bounds for equiangular lines. In Discrete geometry and algebraic combinatorics; Contemp. Math.; Amer. Math. Soc.: Providence, RI, 2014; Vol. 625, Contemp. Math.; pp. 111–121. [Google Scholar] [CrossRef]
  11. de Caen, D. Large equiangular sets of lines in Euclidean space. Electron. J. Combin. 2000, 7, 55. [Google Scholar] [CrossRef]
  12. Malozemov, V.N.; Pevnyi, A.B. Equiangular tight frames. J. Math. Sci. (N.Y.) 2009, 157, 789–815. [Google Scholar] [CrossRef]
  13. Neumaier, A. Graph representations, two-distance sets, and equiangular lines. Linear Algebra Appl. 1989, 114/115, 141–156. [Google Scholar] [CrossRef]
  14. Jiang, Z.; Polyanskii, A. Forbidden subgraphs for graphs of bounded spectral radius, with applications to equiangular lines. Israel J. Math. 2020, 236, 393–421. [Google Scholar] [CrossRef]
  15. de Laat, D.; Machado, F.C.; de Oliveira Filho, F.M.; Vallentin, F. k-point semidefinite programming bounds for equiangular lines. Math. Program. 2022, 194, 533–567. [Google Scholar] [CrossRef]
  16. Greaves, G.; Koolen, J.H.; Munemasa, A.; Szöllosi, F. Equiangular lines in Euclidean spaces. J. Combin. Theory Ser. A 2016, 138, 208–235. [Google Scholar] [CrossRef]
  17. Greaves, G.R.W.; Syatriadi, J.; Yatsyna, P. Equiangular lines in Euclidean spaces: dimensions 17 and 18. Math. Comp. 2023, 92, 1867–1903. [Google Scholar] [CrossRef]
  18. Okuda, T.; Yu, W.H. A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index 4. European J. Combin. 2016, 53, 96–103. [Google Scholar] [CrossRef]
  19. Yu, W.H. New bounds for equiangular lines and spherical two-distance sets. SIAM J. Discrete Math. 2017, 31, 908–917. [Google Scholar] [CrossRef]
  20. King, E.J.; Tang, X. New upper bounds for equiangular lines by pillar decomposition. SIAM J. Discrete Math. 2019, 33, 2479–2508. [Google Scholar] [CrossRef]
  21. Conway, J.H.; Hardin, R.H.; Sloane, N.J.A. Packing lines, planes, etc.: packings in Grassmannian spaces. Experiment. Math. 1996, 5, 139–159. [Google Scholar] [CrossRef]
  22. Greaves, G.R.W.; Syatriadi, J. Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs. J. Combin. Theory Ser. A 2024, 201, Paper. [Google Scholar] [CrossRef]
  23. Greaves, G.R.W.; Syatriadi, J.; Yatsyna, P. Equiangular lines in low dimensional Euclidean spaces. Combinatorica 2021, 41, 839–872. [Google Scholar] [CrossRef]
  24. Seidel, J.J. Discrete non-Euclidean geometry. In Handbook of incidence geometry; North-Holland: Amsterdam, 1995; pp. 843–920. [Google Scholar] [CrossRef]
  25. Greaves, G.R.W. Equiangular line systems and switching classes containing regular graphs. Linear Algebra Appl. 2018, 536, 31–51. [Google Scholar] [CrossRef]
  26. Koornwinder, T.H. A note on the absolute bound for systems of lines. Indag. Math. 1976, 38, 152–153. [Google Scholar] [CrossRef]
  27. Lin, Y.c.R.; Yu, W.H. Saturated configuration and new large construction of equiangular lines. Linear Algebra Appl. 2020, 588, 272–281. [Google Scholar] [CrossRef]
  28. Lin, Y.C.R.; Yu, W.H. Equiangular lines and the Lemmens-Seidel conjecture. Discrete Math. 2020, 343, 111667–18. [Google Scholar] [CrossRef]
  29. Zhao, Y. Equiangular lines and eigenvalue multiplicities. Notices Amer. Math. Soc. 2024, 71, 1151–1159. [Google Scholar] [CrossRef]
  30. Coutinho, G.; Godsil, C.; Shirazi, H.; Zhan, H. Equiangular lines and covers of the complete graph. Linear Algebra Appl. 2016, 488, 264–283. [Google Scholar] [CrossRef]
  31. Jedwab, J.; Wiebe, A. Large sets of complex and real equiangular lines. J. Combin. Theory Ser. A 2015, 134, 98–102. [Google Scholar] [CrossRef]
  32. Jedwab, J.; Wiebe, A. Constructions of complex equiangular lines from mutually unbiased bases. Des. Codes Cryptogr. 2016, 80, 73–89. [Google Scholar] [CrossRef]
  33. Godsil, C.; Roy, A. Equiangular lines, mutually unbiased bases, and spin models. European J. Combin. 2009, 30, 246–262. [Google Scholar] [CrossRef]
  34. Sustik, M.A.; Tropp, J.A.; Dhillon, I.S.; Heath, Jr., R. W. On the existence of equiangular tight frames. Linear Algebra Appl. 2007, 426, 619–635. [Google Scholar] [CrossRef]
  35. Strohmer, T. A note on equiangular tight frames. Linear Algebra Appl. 2008, 429, 326–330. [Google Scholar] [CrossRef]
  36. Hoffman, T.R.; Solazzo, J.P. Complex equiangular tight frames and erasures. Linear Algebra Appl. 2012, 437, 549–558. [Google Scholar] [CrossRef]
  37. Brouwer, A.E.; Haemers, W.H. Spectra of graphs; Universitext, Springer: New York, 2012; p. xiv+250. [Google Scholar] [CrossRef]
  38. Zauner, G. Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 2011, 9, 445–507. [Google Scholar] [CrossRef]
  39. Renes, J.M.; Blume-Kohout, R.; Scott, A.J.; Caves, C.M. Symmetric informationally complete quantum measurements. J. Math. Phys. 2004, 45, 2171–2180. [Google Scholar] [CrossRef]
  40. Appleby, D.M. Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math. Phys. 2005, 46, 052107. [Google Scholar] [CrossRef]
  41. Appleby, M.; Bengtsson, I.; Flammia, S.; Goyeneche, D. Tight frames, Hadamard matrices and Zauner’s conjecture. J. Phys. A 2019, 52, 295301. [Google Scholar] [CrossRef]
  42. Kopp, G.S. SIC-POVMs and the Stark conjectures. Int. Math. Res. Not. IMRN 2021, 13812–13838. [Google Scholar] [CrossRef]
  43. Appleby, M.; Flammia, S.; McConnell, G.; Yard, J. SICs and algebraic number theory. Found. Phys. 2017, 47, 1042–1059. [Google Scholar] [CrossRef]
  44. Scott, A.J. Tight informationally complete quantum measurements. J. Phys. A 2006, 39, 13507–13530. [Google Scholar] [CrossRef]
  45. Greaves, G.R.W.; Iverson, J.W.; Jasper, J.; Mixon, D.G. Frames over finite fields: equiangular lines in orthogonal geometry. Linear Algebra Appl. 2022, 639, 50–80. [Google Scholar] [CrossRef]
  46. Greaves, G.R.W.; Iverson, J.W.; Jasper, J.; Mixon, D.G. Frames over finite fields: basic theory and equiangular lines in unitary geometry. Finite Fields Appl. 2022, 77, Paper. [Google Scholar] [CrossRef]
  47. Balla, I.; Sudakov, B. Equiangular subspaces in Euclidean spaces. Discrete Comput. Geom. 2019, 61, 81–90. [Google Scholar] [CrossRef]
  48. Balla, I.; Draxler, F.; Keevash, P.; Sudakov, B. Equiangular lines and subspaces in Euclidean spaces. Electronic Notes in Discrete Mathematics 2017, 61, 85–91. [Google Scholar] [CrossRef]
  49. Krishna, K.M. p-adic equiangular lines and p-adic van Lint–Seidel relative bound. Bulletin Polish Acad. Sci. Math 2014. [Google Scholar] [CrossRef]
  50. Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
  51. Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
  52. Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
  53. Wegge-Olsen, N.E. K-theory and C*-algebras: A friendly approach; Oxford Science Publications, The Clarendon Press, Oxford University Press: New York, 1993; p. xii+370. [Google Scholar]
  54. Gipson, P.M. Invariant basis number for C*-algebras. Illinois J. Math. 2015, 59, 85–98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated