Submitted:
16 April 2025
Posted:
18 April 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. The Lorentz Group
2.1. Orbits of the Lorentz Group
- (a)
- For time-like : We have . The little group is thus the rotation group.
- (b)
- For light-like : This four-vector is invariant under rotations around the z-axis.
- (c)
- For again light-like : the rotation matrix is the same.
- (d)
- For space-like : This four-vector remains invariant under rotations around the z-axis as well as boosts along either the x and y-axis. Together, these form the three-dimensional Lorentz group satisfying the required condition.
- (e)
- For : The entire Lorentz group leaves this zero momentum invariant, where the origin is the orbit.
3. The Covering Group of the Lorentz Group: SL(2, c)
4. Subgroups of the Lorentz Group
4.1. The Squeeze-Rotation and the Shear-Squeeze Representations of the Sp(2) Group
5. Poincaré Group and Wigner’s Little Groups
5.1. Poincaré Group
5.2. Wigner’s Little Groups
5.3. Wigner Four-Momentum-Matrices
6. Examples
6.1. Applications to Quantum Mechanics: Lorentz-Covariant Harmonic Oscillators, Entangled Excited States
6.1.1. Lorentz-Covariant Harmonic Oscillators
6.1.2. Entangled Excited States
6.2. Applications to High Energy Physics: Proton form Factor and Feynman’s Parton Model
6.2.1. The Proton Form Factor
6.2.2. The Parton Picture
- (a)
- The picture is only valid if the hadrons are moving at close to light speed.
- (b)
- The partons behave as independent free particles, and the interaction time of the quarks becomes dilated between the quarks.
- (c)
- The hadron appears to have a widespread momentum distribution of partons.
- (d)
- The parton number appears to be much greater than that of quarks or even infinite.
6.3. Application to Classical Optics: Laser Cavity
6.4. Applications to Quantum Optics: Shear States
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
| Exponentiation | Two-by-two | Four-by-four | |||
|---|---|---|---|---|---|
References
- Dirac, P.A.M. Forms of Relativistic Dynamics. Reviews of Modern Physics 1949, 21, 392–399. [Google Scholar] [CrossRef]
- Wigner, E.P. On Unitary Representations of the Inhomogeneous Lorentz Group. The Annals of Mathematics 1939, 40, 149–204. [Google Scholar] [CrossRef]
- Wigner, E.P. Group Theory: And its Application to the Quantum Mechanics of Atomic Spectra; Academic Press: New York, NY, USA, 1959; (Originally published as: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Springer Verlag, Braunscheig, Germany 1931). [Google Scholar]
- Hofstadter, R.; McAllister, R.W. Electron Scattering from the Proton. Physical Review 1955, 98, 217–218. [Google Scholar] [CrossRef]
- Gell-Mann, M. The Eightfold Way: A theory of strong interaction symmetry; Vol. TID-12608;CTSL-20; California Institute of Technology: Synchrotron, Laboratory, Pasadena, CA, 1961. [Google Scholar] [CrossRef]
- Gell-Mann, M. Symmetries of Baryons and Mesons. Physical Review 1962, 125, 1067–1084. [Google Scholar] [CrossRef]
- Gell-Mann, M. A Schematic Model of Baryons and Mesons. Physics Letters 1964, 8, 214–215. [Google Scholar] [CrossRef]
- Wigner, E. Über nicht kombinierende Terme in der neueren Quantentheorie. II. Teil. Zeitschrift für Physik 1927, 40, 883–892. [Google Scholar] [CrossRef]
- Weyl, H.; Weyl, H. The theory of groups and quantum mechanics, nachdr. ed.; Dover books on mathematics, Dover Publ: Mineola, NY, 2009. [Google Scholar]
- O’Raifeartaigh, L. Group structure of gauge theories, transferred to digital print ed.; Cambridge monographs on mathematical physics, Cambridge Univ. Press: Cambridge, 1999. [Google Scholar]
- Başkal, S.; Kim, Y.S.; Noz, M.E. Theory and Applications of the Poincaré Group, 2024 ed., 2nd ed.; Springer Nature Switzerland: Cham, 2024. [Google Scholar] [CrossRef]
- Kim, Y.S.; Wigner, E.P. Space-time geometry of relativistic particles. Journal of Mathematical Physics 1990, 31, 55–60. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noz, M.E. Covariant Harmonic Oscillators and the Quark Model. Physical Review D 1973, 8, 3521–3527. [Google Scholar] [CrossRef]
- Han, D.; Kim, Y.S.; Noz, M.E. Physical principles in quantum field theory and in covariant harmonic oscillator formalism. Foundations of Physics 1981, 11, 895–905. [Google Scholar] [CrossRef]
- Başkal, S.; Kim, Y.; Noz, M. Mathematical Devices for Optical Sciences.; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- De Saxcé, G. Link between Lie Group Statistical Mechanics and Thermodynamics of Continua. Entropy 2016, 18, 254. [Google Scholar] [CrossRef]
- Müller, J.; Hermann, S.; Sammüller, F.; Schmidt, M. Gauge Invariance of Equilibrium Statistical Mechanics. Phys. Rev. Lett. 2024, 133, 217101. [Google Scholar] [CrossRef] [PubMed]
- Bargmann, V.; Wigner, E.P. Group Theorectical Discussion of Relatistic Wave Equations. Proc. Nat. Acad. Sci. (USA) 1948, 34, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Brice, S.; Marshak, M. Co-chairs. The XXIX International Conference on Neutrino Physics and Astrophysics. In Proceedings of the ICNP XXIX 2020, avaiable online only, Fermilab, Chicago, IL USA, 2020. (held as online only conference by Fermilab, June 22-July 2.). [Google Scholar]
- Janner, A.; Janssen, T. Electromagnetic compensating gauge transformations. Physica 1971, 53, 1–27. [Google Scholar] [CrossRef]
- Han, D.; Kim, Y.; Son, D. Gauge transformations as Lorentz-Boosted rotations. Physics Letters B 1983, 131, 327–329. [Google Scholar] [CrossRef]
- Han, D.; Kim, Y.S.; Son, D. Eulerian parametrization of Wigner’s little groups and gauge transformations in terms of rotations in two--component spinors. Journal of Mathematical Physics 1986, 27, 2228–2235. [Google Scholar] [CrossRef]
- Kim, Y.S.; Wigner, E.P. Space--time geometry of relativistic particles. Journal of Mathematical Physics 1990, 31, 55–60. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noz, M.E. Physical basis for minimal time-energy uncertainty relation. Foundations of Physics 1979, 9, 375–387. [Google Scholar] [CrossRef]
- Yukawa, H. Structure and Mass Spectrum of Elementary Particles. I. General Considerations. Physical Review 1953, 91, 415–416. [Google Scholar] [CrossRef]
- Feynman, R.P.; Kislinger, M.; Ravndal, F. Current Matrix Elements from a Relativistic Quark Model. Physical Review D 1971, 3, 2706–2732. [Google Scholar] [CrossRef]
- Başkal, S.; Kim, Y.S.; Noz, M.E. Entangled Harmonic Oscillators and Space-Time Entanglement. Symmetry 2016, 8, 55–80. [Google Scholar] [CrossRef]
- Walls, D.F.; Milburn, G.J. Quantum optics, 2nd ed ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
- Ferraro, A.; Olivares, S.; Paris, M.G.A. Gaussian States in Quantum Information; Napoli Series on physics and Astrophysics; Bibliopolis: Napoles, Italy, 2005. [Google Scholar]
- Adesso, G.; Ragy, S.; Lee, A.R. Continuous Variable Quantum Information: Gaussian States and Beyond. Open Systems & Information Dynamics 2014, 21, 1440001. [Google Scholar] [CrossRef]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Reviews of Modern Physics 2012, 84, 621–669. [Google Scholar] [CrossRef]
- Feynman, R.P. Very High–Energy Collisions of Hadrons. Physical Review Letters 1969, 23, 1415–1417. [Google Scholar] [CrossRef]
- Feynman, R.P. The Behavior of Hadron Collisions at Extreme Energies. In Proceedings of the Proceedings of the 3rd International Conference on High Energy Collisions; Yang, C.; et al.., Eds., New York, NY, USA, 1969; pp. 237–249.(Stony Brook, New York, USA, 5-6-September.).
- Fujimura, K.; Kobayashi, T.; Namiki, M. Nucleon Electromagnetic Form Factors at High Momentum Transfers in an Extended Particle Model Based on the Quark Model. Progress of Theoretical Physics 1970, 43, 73–79. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noz, M.E. Lorentz Harmonics, Squeeze Harmonics, and Their Physical Applications. Symmetry 2011, 3, 16–36. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noz, M.E. Covariant harmonic oscillators and the parton picture. Physical Review D 1977, 15, 335–338. [Google Scholar] [CrossRef]
- Kim, Y.S. Observable gauge transformations in the parton picture. Physical Review Letters 1989, 63, 348–351. [Google Scholar] [CrossRef]
- Bjorken, J.D.; Paschos, E.A. Inelastic Electron–Proton and γ-Proton Scattering and the Structure of the Nucleon. Physical Review 1969, 185, 1975–1982. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noz, M.E. Coupled oscillators, entangled oscillators, and Lorentz–covariant harmonic oscillators. Journal of Optics B: Quantum and Semiclassical Optics 2005, 7, S458–S467. [Google Scholar] [CrossRef]
- Yariv, A. Quantum electronics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1989. [Google Scholar]
- Haus, H.A. Waves and fields in optoelectronics; Prentice-Hall series in solid state physical electronics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Siegman, A.E. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Hawkes, J.; Latimer, I. Lasers: theory and practice; Prentice-Hall international series in optoelectronics; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of photonics, 2nd ed.; Wiley series in pure and applied optics, Wiley Interscience; A John Wiley & Sons, Inc., Publication, New NY, USA: Hoboken, NJ, USA, 2007. [Google Scholar]
- Başkal, S.; Kim, Y.S. Lorentz group in ray and polarization optics. In Mathematical Optics: Classical, Quantum and Computational Methods; Lakshminarayanan, V., Calvo, M.L., Alieva, T., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2013; pp. 303–349. [Google Scholar]
- Başkal, S.; Kim, Y.S.; Noz, M.E. Wigner’s Space-Time Symmetries Based on the Two-by-Two Matrices of the Damped Harmonic Oscillators and the Poincaré Sphere. Symmetry 2014, 6, 473–515. [Google Scholar] [CrossRef]
- Başkal, S.; Kim, Y.S.; Noz, M.E. Physics of the Lorentz Group (Second Edition): Beyond high-energy physics and optics; IOP Publishing: Bristol, UK, 2021. [Google Scholar] [CrossRef]
- Kim, Y.S.; Noz, M.E. Phase space picture of quantum mechanics: group theoretical approach; Number 40 in Lecture notes in physics series; World Scientific Publishing Co.: Singapore; Hackensack, NJ, USA, 1991. [Google Scholar]
- Klauder, J.R.; Sudarshan, E.C.G. Fundamentals of quantum optics; (Originally published: New York, NY, USA : W.A. Benjamin, 1968.); Dover Publications: Mineola, N.Y, 2006. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An introduction to quantum field theory; The advanced book program, CRC Press, Taylor & Francis Group: Boca Raton London New York, 2019. [Google Scholar]
- Başkal, S.; Kim, Y.S.; Noz, M.E. Einstein’s E =mc2 Derivable from Heisenberg’s Uncertainty Relations. Quantum Reports 2019, 1, 236–251. [Google Scholar] [CrossRef]




| Particle mass | Wigner four-vector | Wigner transformation matrix | ||
|---|---|---|---|---|
| Massive | ||||
| Massless | ||||
| Imaginary-mass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
