The development of biosensors for target detection plays a crucial role in advancing various fields of bioscience. This work presents the development of a genosensor that exploits the colorimetric phenol-sulfuric acid sugar reaction for the detection of DNA, and RNA as specific targets, and DNA intercalator molecules. The biosensor combines simplicity and reliability to create a novel bio-assay for accurate and rapid analysis. A 96-well microplate based on polystyrene polymer was used as the platform for an unmodified capture DNA immobilization via a silanization process and with (3-Aminopropyl) triethoxysilane (APTES). After that, a hybridization step was carried out to catch the target molecule, followed by adding phenol and sulfuric acid to quantify the amount of DNA or RNA sugar backbone. This reaction generates a yellow-orange color on the wells measured at 490 nm that was proportional to the target concentration. Under the optimum conditions, a calibration curve was obtained for each target. The developed biosensor demonstrated high sensitivity, good selectivity, and linear response over a wide concentration range for DNA and RNA targets. Additionally, the biosensor was successfully employed for the detection of DNA intercalator agents that inhibit the hybridization of DNA complementary to the immobilized capture DNA. The developed biosensor offers a potential tool for sensitive and selective detection in various applications, including virus diagnosis, genetic analysis, pathogenic bacteria monitoring, and drug discovery.