A peer-reviewed article of this preprint also exists.
Abstract
In this study, a basic study was performed to analyze the seasonal temperature status of a research room in the Global Environment Research Building where ceiling-embedded indoor units are installed to study the room temperature status of the building as well as to improve its thermal environment. In addition, a direction for improvement of the indoor thermal environment in the winter was proposed through a CFD (computational fluid dynamics) simulation and was proven by an additional experiment. Through the results of this study, it appeared that if the ceiling-embedded indoor unit was installed in the small indoor space without considering the thermal vulnerability of its perimeter boundary, the air temperature of the upper part was greatly different from that of the bottom part in the winter. Hence, in this study, as a means to improve it, convectors were installed to minimize the effect of the external thermal environment and angle-controllable air flowing fans were installed to mitigate the stratification distribution. With such result, it was intended to present the essential data for improvement of the thermal environment as well as conservation of heating energy in the winter for buildings by reviewing the use of the ceiling-embedded indoor unit in the future.
Keywords:
Subject:
Engineering - Architecture, Building and Construction
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.