Preprint
Article

Impaired Adipose Tissue Expansion Caused by LXR Activation is Associated with Insulin Resistance in HFD Mice

Altmetrics

Downloads

1413

Views

1453

Comments

0

Submitted:

09 October 2016

Posted:

10 October 2016

You are already at the latest version

Alerts
Abstract
Liver X receptors (LXR) are deemed as potential drug targets for atherosclerosis, whereas a role in adipose tissue expansion and its relation to insulin sensitivity remains unclear. To assess the metabolic effects of LXR activation, C57BL/6 mice on a high-fat diet (HFD) were treated with the dual LXRα/β agonist T0901317 (30 mg/kg per day) for 3 weeks. Differentiated 3T3-L1 was used for analysing the effect of T0901317 on glucose uptake.T0901317 reduced fat mass, accompanied by a massive fatty liver and lower adipokine levels in circulation of HFD mice. Increased adipocyte apoptosis and macrophage infiltration were found in epididymal fat of T0901317-treated HFD mice. In addition, T0901317 treatment promoted basal lipolysis, but blunted the anti-lipolytic action of insulin. Furthermore, LXR activation antagonized PPARγ target genes in epididymal fat and PPARγ-PPRE binding activity in 3T3-L1 adipocytes. Although the glucose tolerance was comparable to that in vehicle-treated HFD mice, the insulin tolerance was significantly decreased in T0901317-treated HFD mice, indicating decreased insulin sensitivity by T0901317 administration, and which was further supported by impaired insulin signalling found in epididymal fat and decreased insulin-induced glucose uptake in 3T3-L1 by T0901317administration. These findings reveal that LXR activation impairs adipose expansion which contributes to decreased insulin sensitivity.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated