Preprint
Article

Starch Degradability of Maize Kernels as Influenced by Type of Endosperm and Soil in Rumen Fluid at Different Maturity Stages

Altmetrics

Downloads

394

Views

234

Comments

0

Submitted:

10 November 2018

Posted:

12 November 2018

You are already at the latest version

Alerts
Abstract
Starch is considered a major nutritional factor of maize (Zea mays L.) kernels, and can be influenced by the type of endosperm. The effects of endosperm type (vitreous and non-vitreous) and type of soil (clay and sand) on the starch content of kernels of maize, and on the in vitro degradation of starch were investigated in the rumen fluid after harvesting at 6 different maturity stages during 2008 and five different maturity stages in 2009. Starch degradation, in rumen fluid, was determined after 6 h, 12 h and 20 h of incubation, using the technique of gas production. A positive linear relationship was observed during gas production (ml gas/g organic matter) and starch degradation (g kg-1 starch) at all incubation times, with starch contents of maize kernels to a certain limit of starch accumulation (i.e. at starch contents 451-519 g/kg OM) and negative relationship afterwards. This suggests significant effects of maturity on ruminal starch degradation of maize kernels. At each harvest date, ruminal starch degradation of maize kernels was affected by crop genotype as well as soil type. The in vitro ruminal degradation potential of starch in maize kernels was influenced by the nature of the endosperm, with a higher degradation of non-vitreous kernels than of vitreous kernels. The rumen starch degradation was also influenced by type of soil, with better degradation on clay than sandy soil. For all the incubation times and maturity stages the effects of genotype, soil type and maturity stage were consistent in rumen fluid.
Keywords: 
Subject: Biology and Life Sciences  -   Animal Science, Veterinary Science and Zoology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated