Preprint
Article

Characterization of Polyurethane Foam Waste for Reuse in Eco-Efficient Building Materials

Altmetrics

Downloads

1032

Views

303

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 December 2018

Posted:

17 December 2018

You are already at the latest version

Alerts
Abstract
In the European Union, the demand for polyurethane is continually growing. In 2017, the estimated production value of polyurethane was 700,400T, of which 27.3% is taken to landfill, which causes an environmental problem. In this paper the behaviour of various polyurethane foams from the waste of different types of industries will be analysed with the aim of assessing their potential use in construction materials. In order to this, the wastes were chemically tested by means of CHNS, TGA, and leaching tests. They were tested microstructurally by means of SEM. The processing parameters of the waste was calculated after finding out its granulometry and its physical properties i.e. density and water absorption capacity. In addition, the possibility of incorporating these wastes in plaster matrices was studied by determining its rendering in an operational context, finding out its mechanical resistance to flexion and compression at 7 days, its reaction to fire as well as its weight per unit of area and its thermal behaviour. The results show that in all cases, the waste is inert and does not undergo leaching. The generation process of the waste determines the foam’s microstructure in addition to its physical-chemical properties that directly affect building materials in which they are included, thus offering different ways in which they can be applied.
Keywords: 
Subject: Engineering  -   Architecture, Building and Construction
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated