Preprint
Concept Paper

Thermodynamic Function of Glycogen in Brain and Muscle

Altmetrics

Downloads

459

Views

295

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

18 November 2019

Posted:

19 November 2019

You are already at the latest version

Alerts
Abstract
Key features of glycogen metabolism in excitable tissues are not well-explained by current concepts. Glycogen stores in brain and skeletal muscle are generally considered to function as local glucose reserves, to be utilized during transient mismatches between glucose supply and demand; however, quantitative measures show that blood glucose supply is likely never rate-limiting for energy metabolism in either brain or muscle under physiological conditions. These tissues nevertheless do normally utilize glycogen during intervals of increased energy demand, despite the availability of free glucose, and despite the ATP cost of cycling glucose through glycogen polymer. This seemingly wasteful shunt can be explained by considering the effect of glycogenolysis on the amount of energy derived from ATP (ΔG’ATP). ΔG’ATP is diminished by elevations in Pi, such as occur at sites of rapid ATP hydrolysis and net phosphocreatine consumption. Glycogen utilization counters this effect by sequestering Pi in glycolytic metabolites (glycogenn + Pi → glycogenn-1 + glucose-1-phosphate → phosphorylated glycolytic intermediates), and thereby maintains the amount of energy obtained from ATP at sites of rapid ATP consumption. This thermodynamic effect may be particularly important in the narrow, spatially constricted astrocyte processes that ensheath neuronal synapses. This effect can also explain the co-localization of glycogen and cytosolic phosphocreatine in brain astrocytes, glycolytic super-compensation in brain when glycogen is not available, and aspects of exercise physiology in muscle glycogen phosphorylase deficiency (McArdle’s disease).
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated