Version 1
: Received: 21 December 2019 / Approved: 21 December 2019 / Online: 21 December 2019 (12:31:05 CET)
Version 2
: Received: 26 January 2021 / Approved: 29 January 2021 / Online: 29 January 2021 (15:28:06 CET)
Version 3
: Received: 19 September 2022 / Approved: 20 September 2022 / Online: 20 September 2022 (10:27:39 CEST)
How to cite:
Wang, X.-S. A Theoretical Calculation of the Cosmological Constant Based on the Theory of Vacuum Mechanics. Preprints2019, 2019120287. https://doi.org/10.20944/preprints201912.0287.v1
Wang, X.-S. A Theoretical Calculation of the Cosmological Constant Based on the Theory of Vacuum Mechanics. Preprints 2019, 2019120287. https://doi.org/10.20944/preprints201912.0287.v1
Wang, X.-S. A Theoretical Calculation of the Cosmological Constant Based on the Theory of Vacuum Mechanics. Preprints2019, 2019120287. https://doi.org/10.20944/preprints201912.0287.v1
APA Style
Wang, X. S. (2019). A Theoretical Calculation of the Cosmological Constant Based on the Theory of Vacuum Mechanics. Preprints. https://doi.org/10.20944/preprints201912.0287.v1
Chicago/Turabian Style
Wang, X. 2019 "A Theoretical Calculation of the Cosmological Constant Based on the Theory of Vacuum Mechanics" Preprints. https://doi.org/10.20944/preprints201912.0287.v1
Abstract
Lord Kelvin believes that the electromagnetic aether must also generate gravity. Based on a theorem of V. Fock on the mass tensor of an elastic continuum, the contravariant energy-momentum tensor of the $\Omega(1)$ substratum is established. Quasi-static solutions of the gravitational field equations in vacuum are obtained. Based on an assumption, relationships between the contravariant energy-momentum tensor of the $\Omega(1)$ substratum and the contravariant metric tensor are obtained. Thus, the cosmological constant is derived theoretically. The $\Omega(1)$ substratum, or we say the electromagnetic aether, may be a possible candidate of the dark energy. The zero-point energy of electromagnetic fields will not appear as a source term in the generalized Einstein's equations. Some people believed that all kinds of energies should appear as source terms in the Einstein's equations. It may be this belief that leads to the so called cosmological constant problem. The mass density of the electromagnetic aether is equivalent to that $31.33195$ protons contained in a box with a volume of $1.0{m}^{3}$.
Keywords
cosmological constant; dark energy; general relativity; vacuum mechanics; electromagnetic aether
Subject
Physical Sciences, Mathematical Physics
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.