Preprint
Article

Microbial Patterns in Rumen Are Associated with Gain of Weight in Beef Cattle

Altmetrics

Downloads

519

Views

396

Comments

0

Submitted:

13 February 2020

Posted:

14 February 2020

You are already at the latest version

Alerts
Abstract
Ruminal microorganisms play a pivotal role in cattle nutrition. The discovery of the main microbes responsible for enhancing the gain of weight in beef cattle might be used in therapeutic approaches to increase animal performance and cause less environmental damages. Here, we examined differences in bacterial and fungal composition of rumen samples of Braford heifers raised in a natural grassland from Pampa Biome in Brazil. We aimed to detect microbial patterns in the rumen that could be correlated with the gain of weight. 16S and ITS1 genes were amplified from ruminal samples and sequenced to identify the closest microbial relatives within the microbial communities. A predictive model based on microbes responsible for the gain of weight was build and further tested using the entire dataset. The model detected a set of microorganisms associated with animals in the high gain of weight group, including the bacterial taxa RFN20, Prevotella, Anaeroplasma and RF16 and the fungal taxa Aureobasidium, Cryptococcus, Sarocladium, Pleosporales and Tremellales. Most of these organisms have been correlated to the production of substances that improve the ruminal digestion process. These findings provide new insights about cattle nutrition and suggest the use of these microbes to improve beef cattle breeding.
Keywords: 
Subject: Biology and Life Sciences  -   Animal Science, Veterinary Science and Zoology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated