Preprint
Article

Terrestrial Laser Scanning Intensity Captures Diurnal Variation in Leaf Water Potential

Altmetrics

Downloads

295

Views

203

Comments

0

Submitted:

25 May 2020

Posted:

26 May 2020

You are already at the latest version

Alerts
Abstract
Drought-induced plant mortality has increased globally during the last decades and is forecasted to influence global vegetation dynamics. Timely information on plant water dynamics is essential for understanding and anticipating drought-induced plant mortality. The most common metric that has been used for decades for measuring water stress is leaf water potential (ΨL), which is measured destructively. To obtain information on water dynamics from trees and forested landscapes, remote sensing methods have been developed. However, the spatial and temporal resolution of the existing methods have limited our understanding of water dynamics and diurnal variation of ΨL within single trees. Thus, we investigated the capability of terrestrial laser scanning (TLS) intensity in observing diurnal variation in ΨL during a 50 hour monitoring period and aimed to improve understanding on how large part of the diurnal variation in ΨL can be captured using intensity observations. We found that TLS intensity at 905 nm wavelength was able to explain 78% of the variation in ΨL for three trees of two tree species with a root-mean square error of 0.137 MPa. Based on our experiment with three trees, time-series of TLS intensity measurements can be used in detecting changes in ΨL, and thus it is worthwhile to expand the investigations to cover a wider range of tree species and forests and further increase our understanding of plant water dynamics at wider spatial and temporal scales.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated