Research Highlights: Hagenia abyssinica is geographically localized, poor regenerated and endangered species in Ethiopia. Ethiopia has been experiencing variability of rainfall and rise in temperature due to the climate change. This study has hypothesized that the suitable areas for the species will be narrowed by the year 2070. Background and Objective The prediction of species distribution models help to implement appropriate conservation actions. The aim of this research was to identify the current and likely future distribution range and suitable areas for the species, and to determine the presence of H. absyssinica in risk in a short-term future. Material and method: To this end, occurrence data, bioclim variables, soil, elevation, and land cover map of Ethiopia were used. MaxEnt was used to predict distribution. Climate change impacts on the distribution of the species was performed using bioclimatic variables of the future climate data, 2070 (average for 2061-2080) was obtained from IPPC5 (CMIP5) at 30 seconds (1km) spatial resolution. The climate data was projected from GCMs, downscaled and calibrated using rcp4.5. Results: Both current and likely future distribution models were excellent and significantly better than random performance. This study has computed 59987 km2 to be the low impact area for the species under current conditions and will remain habitat under future climates and 39025 km2 area has been identified as the possible high impact areas or declining habitat. The model has also determined that 1238724 km2 of the areas are unsuitable at present and for future climates. The current study found that 15751 km2 of the area will be modified as a new suitable area for H. abyssinica due to climate change. Conclusion: Species distribution modeling is essential for the implementation of conservation actions that are compatible with the inevitable changing climatic conditions of the country.
Keywords:
Subject: Biology and Life Sciences - Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.