Preprint
Article

Self-Healing Biogeopolymers Using Biochar-Immobilized Spores of Pure- and Co-Cultures of Bacteria

Altmetrics

Downloads

527

Views

412

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

29 November 2020

Posted:

30 November 2020

You are already at the latest version

Alerts
Abstract
A sustainable solution for crack maintenance in geopolymers is necessary if they are to be the future of modern green construction. This study thus aimed to develop self-healing biogeopolymers that could potentially rival bioconcrete. First, a suitable healing agent was selected from Bacillus subtilis, B. sphaericus, and B. megaterium by directly adding their spores in the geopolymers and subsequently exposing them to a large amount of nutrients for 14 days. SEM-EDX analysis revealed the formation of biominerals for B. subtilis and B. sphaericus. Next, the effect of biochar-immobilization and co-culturing (B. sphaericus and B. thuringiensis) on the healing efficiencies of the geopolymers were tested and optimized by measuring their ultrasonic pulse velocities weekly over a 28-day healing period. The results show that using co-cultured bacteria significantly improved the observed efficiencies, while biochar-immobilization had a weak effect but yielded an optimum response between 0.3-0.4 g/mL. The maximum crack width sealed was 0.65 mm. Through SEM-EDX and FTIR analyses, the biominerals precipitated in the cracks were identified to be mainly CaCO3. Furthermore, image analysis of the XCT scans of some of the healed geopolymers confirmed that their pulse velocities were indeed improving due to the filling of their internal spaces with biominerals. With that, there is potential in developing self-healing biogeopolymers using biochar-immobilized spores of bacterial cultures.
Keywords: 
Subject: Engineering  -   Architecture, Building and Construction
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated