Preprint
Article

Optimization of the Mix Formulation of Geopolymer using Nickel-laterite Mine Waste and Coal Fly Ash

Altmetrics

Downloads

676

Views

501

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

16 December 2020

Posted:

17 December 2020

You are already at the latest version

Alerts
Abstract
Geopolymer cement has been popularly studied nowadays compared to ordinary Portland cement because it demonstrated superior environmental advantages due to its lower carbon emissions and waste material utilization. This paper focuses on the formulation of geopolymer cement from nickel-laterite mine waste (NMW) and coal fly ash (CFA) as geopolymer precursors, and sodium hydroxide (SH) and sodium silicate (SS) as alkali activators. Different mix formulations of raw materials are synthesized to produce a geopolymer based from an I-optimal design and obtained different compressive strengths. A mixed formulation of 50% NMW and 50% CFA, SH-to-SS ratio of 0.5, and an activator-to-precursor ratio of 0.429 yielded the highest 28-day unconfined compressive strength (UCS) of 22.10 ± 5.40 MPa. Furthermore, using an optimized formulation of 50.12% NMW, SH-to-SS ratio of 0.516, and an activator-to-precursor ratio of 0.428, a UCS value of 36.30 ± 3.60 MPa was obtained. The result implies that the synthesized geopolymer material can be potentially used for concrete structures and pavers, pedestrian pavers, light traffic pavers, and plain concrete.
Keywords: 
Subject: Engineering  -   Architecture, Building and Construction
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated