The electrical stimulation of the visual cortices has the potential to restore vision to blind individuals. Until now, the results of visual cortical prosthetics has been limited as no prosthesis has restored a full working vision but the field has shown a renewed interest these last years thanks to wireless and technological advances. However, several scientific and technical challenges are still open in order to achieve the therapeutic benefit expected by these new devices. One of the main challenges is the electrical stimulation of the brain itself. In this review, we analyze the results in electrode-based visual cortical prosthetics from the electrical point of view. We first briefly describe what is known about the electrode-tissue interface and safety of electrical stimulation. Then we focus on the psychophysics of prosthetic vision and the state-of-the-art on the interplay between the electrical stimulation of the visual cortex and phosphene perception. Lastly, we discuss the challenges and perspectives of visual cortex electrical stimulation and electrode array design to develop the new generation implantable cortical visual prostheses.
Keywords:
Subject: Engineering - Bioengineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.