Preprint
Article

This version is not peer-reviewed.

Validation of a Novel Xeno-Free Method for Human Endometrial Mesenchymal Stromal Cells (E-MSCs) Isolation and Culture

Submitted:

11 March 2021

Posted:

12 March 2021

You are already at the latest version

Abstract
The cyclic regeneration of human endometrium is guaranteed by the proliferative capacity of Endometrial Mesenchymal Stromal Cells (E-MSCs). Due to this, the autologous infusion of E-MSCs has been proposed to support endometrial growth in a wide range of gynecological diseases. We aimed to compare two different endometrial sampling methods, the surgical curettage and the Vacuum Aspiration Biopsy Random Assay, and to validate a novel xeno-free method to culture human E-MSCs. Six E-MSCs cell lines were isolated after a mechanical tissue homogenization and cultured using human platelet lysate. E-MSCs were characterized for the colony formation capacity, proliferative potential and multilineage differentiation. The expression of mesenchymal and stemness markers was tested by FACS analysis and Real-Time PCR, respectively. Chromosomal alterations were evaluated by karyotype analysis, whereas tumorigenic capacity and invasiveness were tested by soft agar assay. Both endometrial sampling techniques allowed to efficiently isolate and expand E-MSCs using a xeno-free method preserving their mesenchymal and stemness phenotype, proliferative potential and multi-lineage differentiation ability during the culture. No chromosomal alterations and invasive/tumorigenic capacity were observed. Herein we report the first evidence of efficient E-MSCs isolation and culture in Good Manufacturing Practice compliance conditions, suggesting Vabra endometrial sampling as alternative to surgical curettage.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated