The rise in the volume, variety and complexity of data in healthcare has made it as a fertile-bed for Artificial intelligence (AI) and Machine Learning (ML). Several types of AI are already being employed by healthcare providers and life sciences companies. The review summarises a classical machine learning cycle, different machine learning algorithms; different data analytical approaches and successful implementation in haematology. Although there are many instances where AI has been found to be great tool that can augment the clinician’s ability to provide better health outcomes, implementation factors need to be put in place to ascertain large-scale acceptance and popularity.
Keywords:
Subject: Biology and Life Sciences - Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.