Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5’-to-3’ direction until being stalled by well-defined RNA structures. Here we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome, hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (-) strand forms of ttsgR were produced in these cells in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins, p28 and p88, were provided in trans. Consistent with its replicational origin, ttsgR accumulation required a 5’ terminal G3(A/U)4 motif shown by others to be crucial for the replication of a TCV satellite RNA. More importantly, introducing a new G3(A/U)4 motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Collectively our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production.
Keywords:
Subject: Biology and Life Sciences - Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.