The role of plant growth-promoting rhizobacteria (PGPR) on enhancing tolerance of plants to abiotic stresses is well reported, but the effects of RGPRs on plants under salinity stress are not widely studied in the literature. Our study aimed to investigate the effect of Halomonas sp. and Azotobacter sp. on antioxidant activity, secondary metabolites, and biochemicals changes of purple basil under salinity stress conditions. The applied salt concentrations in this study were 50, 100, and 150 mM sodium chloride (NaCl). Salinity stress had a negative effect on plant growth parameters. Moreover, a reduction in some of the osmolytes and oxidative stress markers was observed. Inoculated plants ameliorated the oxidative damage by reducing the hydrogen peroxide (H2O2) contents and by increasing osmolytes (proline, total proteins, and soluble sugars), antioxidant enzymes activities (catalase, ascorbate peroxidase) and secondary metabolites (flavonoids). Overall, among treatments, plants inoculated with Azotobacter showed a better impact on physiological attributes to alleviate the adverse effects of 150 mM NaCl salinity stress on basil growth.
Keywords:
Subject: Biology and Life Sciences - Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.