Preprint
Article

Microbial Degradation of PET Plastic Sustainably Yielding Commercially Viable Products

Altmetrics

Downloads

421

Views

511

Comments

0

This version is not peer-reviewed

Submitted:

17 June 2021

Posted:

21 June 2021

You are already at the latest version

Alerts
Abstract
Plastics are extensively used due to their versatility, durability, and low cost. PET stands for Polyethylene terephthalate. PET plastic is widely used all over the world and has many applications ranging from water bottles to fabrics like polyester and many things in between. But its unrestrained use in every field is resulting in heaps and piles of non-biodegradable materials causing damage to the environment and causing pollution. The idea being proposed is to degrade the PET plastic biologically using different bacteria. The bacteria used in this process are Ideonella sakaiensis, Acetobacterium woodii, Pelotomaculum and Methanospirillum hungatei. PET plastic is degraded, yielding Terephthalic Acid (TPA) and Ethylene Glycol (EG) by the action of the bacterium I. sakaiensis. Degradation of EG by A. woodii results in the formation of acetate and ethanol. TPA is degraded by the action of the coculture of Pelotomaculum and M. hungatei thereby yielding methane and acetate. All these products formed have significant commercial uses in various industries. The complete process that is to be carried out can help in achieving sustainability by fulfilling various Sustainable Development Goals set by the United Nations.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated