Preprint
Review

RNAi Crop Protection Advances

Altmetrics

Downloads

641

Views

412

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 September 2021

Posted:

04 October 2021

Read the latest preprint version here

Alerts
Abstract
RNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through Host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS) techniques to control viruses, bacteria, fungi, insects, and nematodes. As for SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption in the target organism. One alternative is the encapsulation in liposomes, virus-like particles, polyplex nanoparticles, and bio-clay, which can be obtained through the recombinant production of RNAi in vectors, transgenesis, and micro/nanoencapsulation. The materials must be safe, biodegradable, and stable in multiple chemical environments favoring the controlled release of RNAi. Most of the current research of encapsulated RNAi focuses primarily on oral delivery to control insects by silencing essential genes. The regulation of RNAi technology focuses on risk assessment from different approaches; however, this technology has positive characteristics for its use in agriculture from the economic, environmental, and human health implications. The emergence of alternatives combining RNAi gene silencing with the induction of resistance in crops by elicitation and metabolic control is expected, as well as multiple silencing and biotechnological optimization of its large-scale production.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated