Submitted:
01 September 2023
Posted:
05 September 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Structure Concept in Identification Tasks
3. Structural Identification Problem Statement
4. Requirements for Model Structure
5. On SI Difficulties of Static Systems
6. Model order estimation
- Bayesian information criterion or Schwartz criterion [46]
- Hannan-Quinn Information Criterion [47]
- There know modifications of criteria (6) - (9), which are used for the synthesis of various models.
7. System nonlinearity degree
8. LPS structural identification
9. Structural identifiability of systems
- The set provides a solution to the parametric identification problem.
- Input provides an informative framework .
10. Identification and identifiability of Lyapunov exponents
11. Identification of parametric constraints in static systems under uncertainty
12. Approaches to choosing model structure
13. Conclusion
References
- Ljung L. System identification: Theory for the User. Prentice Hall PTR, 1999.
- Box G.P., Jenkins G.M Time series analysis: Forecasting and control. Holden-Day, 1976.
- Eickhoff P. Fundamentals of identification of control systems. John Wiley and Sons Ltd, 1974.
- Raibman N.S., Chadeev V.M. Construction of models of production processes. Moscow: Energiya, 1975.
- Graupe D. Identification of systems. Litton Educational Co., 1975.
- Kashyap R. Rao A. Dynamic stochastic models from empirical data. New York: Academic Press, 1976.
- Perelman I.I. Model structure selection Methodology in control objects identification. Automation and telemechanics. 1983;11;5–29.
- Raibman N.S. Identification of control objects (Review). Automation and telemechanics. 1978;6;80–93.
- Giannakis G. B., Serpedin E. A bibliography on nonlinear system identification. Signal Processing. 2001;81(3);533-580. [CrossRef]
- Ljung L. System Identification Toolbox User’s Guide. Computation. Visualization. Programming. Version 5. The MathWorks Inc., 2000.
- Greene B.R. The fabric of the cosmos: space, time and the texture of reality. New York: Random House, Inc., 2004.
- New Philosophical Encyclopedia: In 4 volumes / Edited by V.S. Stepin. Moscow: Mysl, 2001.
- Mathematical Encyclopedia / Edited by I. M. Vinogradov, vol. 2, D–Koo. Moscow: Soviet Encyclopedia, 1979.
- Besekersky V.A., Popov E.P. Theory of automatic control systems. Third edition, revised. Moscow: Nauka, 1975.
- Aho A.V., Hopkroft V., Ulman D.D. Data structures and algorithms. Addison-Wesley, 2004.
- Van Gig J. Applied general systems theory. Harper & Row, 1978.
- Modern Identification Methods. Ed. by P. Eykhoff. John Wiley and Sons 1974.
- Karabutov N.N. About structures of state systems identification of static object with hysteresis. International journal sensing, computing and control. 2012;2(2);59-69.
- Koh C. G., Perry M.J. Structural identification and damage detection using genetic algorithms. CRC Press, 2010.
- Kerschen G., Worden K., Vakakis A., Golinval J. Past, present and future of nonlinear system identification in structural dynamics. Mechanical systems and signal processing. 2006;20;505–592. [CrossRef]
- Sirca G.F., Adeli H. System identification in structural engineering. Scientia Iranica A. 2012;19(6);1355–1364. [CrossRef]
- Karabutov, N. Geometrical frameworks in identification problem. Intelligent Control and Automation. 2021;12;17-43. [CrossRef]
- Isermann R., Münchhof M. Identification of dynamic systems. Springer-Verlag Berlin Heidelberg. 2011. ISBN 978-3-540-78878-2.
- Kuntsevich V.M., Lychak M.M. Synthesis of optimal and adaptive control systems: A game approach. Kiev: Naukova dumka, 1985.
- Karabutov N.N. Structural identification of systems: Analysis of information structures. Мoscow: URSS, 2016.
- Karabutov N.N. Structural identification of static objects: Fields, structures, methods. Moscow: URSS, 2016.
- Karabutov N. About structures of state systems identification of static object with hysteresis. Int. J. Sensing, Computing and Control. 2012;2(2);59-69.
- Mosteller F., Tukey J.W. Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley. 1977.
- Boguslavsky I.A. Polynomial approximation for nonlinear estimation and control problems. Moscow: Fizmatlit, 2006.
- Johnston J. Econometric Methods. McGraw-Hill, 1972.
- Draper N.R., Smith H. Applied Regression Analysis. John Wiley & Sons. 2014.
- Proceedings of the IX International Conference “System Identification and Control Problems” SICPRO'12 Moscow January 28-31, 2008. V.A. Trapeznikov Institute of Control Sciences. Moscow: V.A. Trapeznikov Institute of Control Sciences. 2012.
- Britenkov A.K., Dedus F.F. Prediction of time sequences using a generalized spectral-analytical method. Mathematical modelling. Optimal control. Bulletin of the Nizhny Novgorod University named after N.I. Lobachevsky. 2012; 28-32.
- Marple Jr S. L. Digital spectral analysis: With applications. Prentice-Hall, 1987.
- Prokhorov S.A., Grafkin V.V. Structural and spectral analysis of random processes. Moscow: SNC RAS, 2010.
- Woodside С.М. Estimation of the order of linear systems. Automatica. 1971;7;727-733. [CrossRef]
- Lee R. Optimal estimation, identification, and control. MIT Press, 1964.
- Jenkins G.M., Watts D.G. Spectral analysis and its applications. Holden-Day, 1969.
- Goldenberg L., Matiushkin B.D., Poliak M. Digital signal processing: Handbook. Moscow: Radio and Communications, 1990.
- Berryman J.G. Choice of operator length for maximum entropy spectral analysis. Geophysics. 1978;43;1384–1391. [CrossRef]
- Jones R.H. Autoregression order selection. Geophysics. 1976. 41;771–773. [CrossRef]
- Kay S.M. Modern spectral estimation: Theory and application. N. J.: Prentice-Hall, Inc., Englewood Cliffs. 1999. 543 p.
- Kashyap R.L. Inconsistency of the aic rule for estimation the order of autoregressive models. IEEE Trans. Autom. Control. 1980; AC-25;996–998. [CrossRef]
- Hastie T., Tibshirani R., Friedman J. The elements of statistical learning. Springer, 2001.
- Stoica P., Selen Y. Model-order selection: a review of information criterion rules. Signal Processing Magazine. 2004;21(4);36-47.
- Wagenmakers E.-J. A practical solution to the pervasive problems of p values. Psychonomic Bulletin and Review. 2007;14;779-804. [CrossRef]
- Hannan E.J., Quinn B.G. The Determination of the order an autoregression. Journal of the royal statistical society, Series B. 1979;41;190-195. [CrossRef]
- Dubrovsky A.M., Mkhitaryan V.S., Troshin L.I. Multidimensional statistical methods. M.: Finance and Statistics 2003.
- Hamilton J.D. Time Series Analysis. Princeton University Press, 1994. 813 p.
- Malinvaud E. Statistical methods in econometrics. 3d ed. Amsterdam: North-Holland Publishing Co, 1980.
- Almon S. The distributed lag between capital appropriations and expenditures. Econometrica. 1965;33; 178-196. [CrossRef]
- Karabutov N.N. Structures, fields and methods of identification of nonlinear static systems in the conditions of uncertainty. Intelligent control and automation. 2010;1;59-67. [CrossRef]
- Mehra R.K. Optimal input signals for parameter estimation in dynamic systems. A survey and new results. IEEE Trans. Automatic Control. 1974; AC-19;753-768. [CrossRef]
- Söderstrom T. Comments on order assumption and singularity of information matrix for pulse transfer function models. IEEE Trans. Automatic Control. 1975; AC-20;445-447. [CrossRef]
- Stoica P., Söderstrom T. On non-singular information matrices and local identifiability. Intern. J. Control. 1982;35;323-329. [CrossRef]
- Young P.С., Jakeman A.J., McMurtrie R. An instrumental variable method for model order identification. Automatica. 1980;16;281-294. [CrossRef]
- Karabutov N.N. Introduction to the structural identifiability of nonlinear systems. Moscow: URSS/LENAND, 2021.
- Karabutov N.N. Adaptive identification of systems: Information synthesis. Moscow: URSS, 2016.
- Raibman N. S., Terekhin A.T. Dispersion methods of random functions and their application for the study of nonlinear control objects. Automation and telemechanics. 1965;26;500–509.
- Billings S.A. Structure Detection and Model Validity Tests in the Identification of Nonlinear Systems. Research Report. ACSE Report 196. Department of Control Engineering, University of Sheffield, 1982. [CrossRef]
- Haber R. Nonlinearity tests for dynamic processes. IFAC proceedings volumes. 1985;18(5);409-414. [CrossRef]
- Hosseini S.M., Johansen T. A., Fatehi A. Comparison of nonlinearity measures based on time series analysis for nonlinearity detection. Modeling, identification and control. 2011;32(4);123-140.
- Malinvaud E. Méthodes statistiques de l’économétrie. Deuxième édition. London-Paris, 1969.
- Demetriou I.C., Vassiliou E.E. An algorithm for distributed lag estimation subject to piecewise monotonic coefficients. International journal of applied mathematics. 2009;39(1);1-10.
- Dhrymes P.J. Distributed Lags: Problems of estimation and formulation. San Francisco: Holden-Day, 1971.
- Gershenfeld N. The Nature of Mathematical Modelling. Cambridge: Cambridge University Press, 1999.
- Linear Least-Squares Estimation, Stroudsburg / Ed. Kailath T. Pennsylvania: Dowden, Hutchinson and Ross, Inc., 1977.
- Armstrong B. Models for the relationship between ambient temperature and daily mortality. Epidemiology. 2006;17(6);624-631. [CrossRef]
- Nelson C.R. Schwert G.W. Estimating the parameters of a distributed lag model from cross-section data: The Case of hospital admissions and discharges. Journal of the American Statistical Association. 1974;69(347);627-633. [CrossRef]
- Gasparrini A., Armstrong B., Kenwardb M.G. Distributed lag non-linear models. Statistics in Medicine. 2010;29(21);2224–2234. [CrossRef]
- Karabutov N. System with distributed lag: adaptive identification and prediction. International journal of intelligent systems and applications. 2016;8(6);1-13. [CrossRef]
- Fisher I. Note on a Short-cut Method for Calculating Distributed Lags. Bulletin de l’Institut International de Statistique. 1937;29.
- Коуск L.M. Distributed Lags and Investment Analysis. North-Holland Publishing Company, 1954.
- Solow R. On a family of lag distributions. Econometrica. 1960;28;393-406. [CrossRef]
- Theil H., Stern R.M. A simple unimodal lag distribution; Metroeconomica. 1960;12;111–119. [CrossRef]
- Jorgenson D.W. Minimum variance, linear, unbiased seasonal adjustment of economic time series. Journal of the American Statistical Association. 1964; 59;681-724. [CrossRef]
- Demetriou I.C., Vassiliou E. E. A distributed lag estimator with piecewise monotonic coefficients. Proceedings of the World Congress on Engineering. 2008. V. 2. WCE 2008, July 2 - 4, 2008, London, U.K. 2008.
- Yoder J. Autoregressive distributed lag models. WSU Econometrics II. 2007;91-115.
- Karabutov N. Structural identification of systems with distributed lag. International journal of intelligent systems and applications. 2013;5(11);1-10. [CrossRef]
- Karabutov N.N. Structural identification of static systems with distributed lags. International journal of control science and engineering. 2012;2(6);136-142. [CrossRef]
- Kalman R., Falb P.L., Arbib M.A. Topics in mathematical system theory. McGraw-Hill, 1969.
- Aguirregabiria V., Mira P. Dynamic Discrete Choice Structural Models: A Survey. Working Paper 297. University of Toronto, 2007.
- Elgerd O.I. Control Systems Theory, New York : McGraw-Hill, 1967.
- Walter E. Identifiability of state space models. Berlin. Germany: Springer-Verlag. 1982. [CrossRef]
- Audoly S., D’Angio L., Saccoman M.P., Cobelli C. Global identifiability of linear compartmental models - a computer algebra algorithm. IEEE Trans. Automat. Contr. 1998; AC-45; 36-47. [CrossRef]
- Avdeenko T.V. Identification of linear dynamical systems using concept of parametric space separators. Automation and software engineering. 2013;1(3); 16-23.
- Bodunov N.A. Introduction to theory of local parametric identifiability. Differential equations and control processes. 2012;1-137.
- Balonin N.A. Identifiability theorems. St. Petersburg: Publishing house "Polytechnic", 2010.
- Handbook of the theory of automatic control. Edited by A. A. Krasovsky. Moscow: Nauka, 1987.
- Stigter J.D., Peeters R.L.M. On a geometric approach to the structural identifiability problem and its application in a water quality case study. Proceedings of the European Control Conference 2007 Kos, Greece, July 2-5, 2007. 2007; 3450-3456. [CrossRef]
- Chis O.-T., Banga J. R., Balsa-Canto E. Structural identifiability of systems biology models: a critical comparison of methods. PLOS ONE. 2011;6(4);1-16. [CrossRef]
- Saccomani M.P., Thomaseth K. Structural vs practical identifiability of nonlinear differential equation models in systems biology. Bringing mathematics to life. In: Dynamics of mathematical models in biology. Ed. A. Rogato, V. Zazzu, M. Guarracino. Springer. 2010; 31-42.
- Ayvazyan S.A. (ed.), Enyukov I.S., Meshalkin L.D. Applied Statistics: Dependency Research. Reference edition, Moscow: Finansy i Statistika, 1985.
- Karabutov N. Structural identification of dynamic systems with hysteresis. International journal of intelligent systems and applications. 2016;8(7); 1-13. [CrossRef]
- Karabutov N. Structural methods of design identification systems. Nonlinearity problems, solutions and applications. V. 1. Ed. L.A. Uvarova, A. B. Nadykto, A.V. Latyshev. New York: Nova Science Publishers, Inc. 2017;233-274.
- Karabutov N. Structural identification of nonlinear dynamic systems. International journal of intelligent systems and applications. 2015;7(9);1-11.
- Thamilmaran K., Senthilkumar D.V., Venkatesan A., Lakshmanan M. Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit. Physical Review E. 2006;74(9); 036205. [CrossRef]
- Porcher R., Thomas G. Estimating Lyapunov exponents in biomedical time series. Physical Review E. 2001;64(1);010902(R). [CrossRef]
- Hołyst J.A., Urbanowicz K. Chaos control in economical model by time-delayed feedback method. Physica A: Statistical Mechanics and its Applications. 2000;287(3–4);587–598. [CrossRef]
- Macek W.M., Redaelli S. Estimation of the entropy of the solar wind flow. Physical Review E. 2000;62(5);6496–6504. [CrossRef]
- Skokos Ch. The Lyapunov Characteristic Exponents and Their Computation. Lect. Notes Phys. 2010;790;63–135. [CrossRef]
- Gencay R., Dechert W.D. An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system. Physica D. 1992;59;142-157. [CrossRef]
- Takens F. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence. Lecture Notes in Mathematics /Eds D. A. Rand, L.-S. Young. Berlin: Springer-Verlag, 1980; 898;366–381.
- Wolf A., Swift J.B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time series. Physica 16D. 1985;16;285–301. [CrossRef]
- Rosenstein M.T., Collins J.J., De Luca C.J. A practical method for calculating largest Lyapunov exponents from small data sets Source. Physica D. 1993;65(1-2);117–134. [CrossRef]
- Bespalov A.V., Polyakhov N.D. Comparative analysis of methods for estimating first Lyapunov exponent. Modern problems of science and education. 2016;6.
- Golovko V.A. Neural network methods of processing chaotic processes. In: Scientific session of MEPhI-2005. VII All-Russian Scientific and Technical Conference "Neuro-Informatics-2005": Lectures on neuroinformatics. Moscow: MIPhI, 2005; 43-88.
- Perederiy Y.A. Method for calculation of lyapunov exponents spectrum from data series. Izvestiya VUZ .Applied nonlinear dynamics. 2012;20(1);99-104.
- Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part. I: Theory. Pt. II: Numerical applications, Meccanica. 1980;15;9–30. [CrossRef]
- Lyapunov A. M. General problem of motion stability. CRC Press, 1992.
- Dieci L., Russell R.D., Van Vleck E.S. On the compuation of Lyapunov exponents for continuous dynamical systems. SIAM Journal on Numerical Analysis. 1997;34;402–423. [CrossRef]
- Filatov V.V. Structural characteristics of anomalies of geophysical fields and their use in forecasting. Geophysics, geophysical instrumentation. 2013;4(16);34-41.
- Bylov, F., Vinograd, R.E., Grobman, D.M. and Nemytskii, V.V. Theory of Lyapunov exponents and its application to problems of stability. Moscow: Nauka, 1966.
- Karabutov N. Structural methods of estimation Lyapunov exponents linear dynamic system. International journal of intelligent systems and applications. 2015;7(10);1-11. [CrossRef]
- Karabutov N.N. Structures in identification problems: Construction and analysis. Moscow: URSS. 2018.
- Karabutov N.N. Identifiability and detectability of Lyapunov exponents for linear dynamical systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2022;23(7):339-350. (In Russ.). [CrossRef]
- Karabutov N. Chapter 9. Identifiability and Detectability of Lyapunov Exponents in Robotics. In: Design and Control Advances in Robotics/ Ed. Mohamed Arezk Mellal. IGI Globalss Publisher of Timely Knowledge. 2023;152-174.
- Gagliardini P., Gouriéroux C., Renault E. Efficient Derivative Pricing by Extended Method of Moments. National Centre of Competence in Research Financial Valuation and Risk Management, 2005.
- Rossi B. Optimal tests for nested model selection with underlying parameter instability. Econometric Theory. 2005;21(05);962-990. [CrossRef]
- Giacomini R., Rossi B. Model comparisons in unstable environments. ERID Working Paper 30, Duke. 2009. [CrossRef]
- Magnusson L., Mavroeidis S. Identification using stability restrictions. 2012, http://econ.sciences-po.fr/sites/default/files/SCident32s.pdf. [CrossRef]
- Bardsley J.M. A Bound-Constrained Levenburg-Marquardt Algorithm for a Parameter Identification Problem in Electromagnetics, 2004. http://www.math.umt.edu/bardsley/papers/EMopt04.pdf.
- Palanthandalam-Madapusia H.J., van Peltb T.H., Bernstein D.S. Parameter consistency and quadratically constrained errors-in-variables least-squares identification. International journal of control. 2010;83(4);862–877. [CrossRef]
- Van Pelt T.H., Bernstein D.S. Quadratically constrained least squares identification. Proceedings of the American Control Conference, Arlington, VA June 25-27. 2001. 2001;3684-3689. [CrossRef]
- Corrêa M.V., Aguirre L.A., Saldanha R.R. Using steady-state prior knowledge to constrain parameter estimates in nonlinear system identification. IEEE transactions on circuits and systems - I: Fundamental theory and applications. 2002;49(9);1370-1381. [CrossRef]
- Chadeev V.М., Gusev S.S. Identification with restrictions. determining a static plant parameters estimate. Proceedings of the VII International Conference “System Identification and Control Problems” SICPRO 'OS Moscow January 28-31, 2008. V.A. Trapeznikov Institute of Control Sciences. Moscow: V.A. Trapeznikov Institute of Control Sciences. 2012; 261-269.
- Chia T.L., Chow P.C., Chizeck H.J. Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans Biomed Eng. 1991;38(5);429-42. [CrossRef]
- Wen-Ming Shi. Parameter Estimation with Constraints Based on Variational Method. Journal Marine. Sci. Appl. 2010;9;105-108. [CrossRef]
- Vanli O.A., Del Castillo E. Closed-Loop System Identification for Small Samples with Constraints. Technometrics. 2007;49(4);382-394. [CrossRef]
- Hametner C., Jakubek S. Nonlinear identification with local model networks using GTLS techniques and equality constraints. IEEE Trans Neural Netw. 2011;22(9);1406-18. [CrossRef]
- Mead J.L., Renaut R.A. Least squares problems with inequality constraints as quadratic constraints. Linear Algebra and its Applications. 2010;432;1936-1949. [CrossRef]
- Mazunin V.P., Dvoinikov D.A. Parametric constraints in nonlinear control systems of mechanisms with elasticity. Electrical engineering. 2010;5;9-13.
- Karabutov N. Identification of parametrical restrictions in static systems in conditions of uncertainty. International journal of intelligent systems and applications. 2013;5(4);43-54.
- Karabutov N.N. Structural identification of a static object by processing measurement data. Measurement Techniques. Springer US. 2009;52(1);7-15. [CrossRef]
- Gabor D., Wiby W.P.L., Woodcock R.A. A universal nonlinear filter, predictor and simulator which optimizes itself by learning processes. Proceedings of the IEEE - Part B: Electronic and Communication Engineering, 1961; 108;422-438. [CrossRef]
- Ivakhnenko A.G. Long-term forecasting and management of complex systems. Kiev: Technika, 1975.
- Goodman T.P., Reswick J.B. Determination of system characteristics from normal operating records. Trans. ASME. 1956; 2;259-271. [CrossRef]
- Parsen E. Some recent advances in time series modelling. IEEE Trans. Automat. Control. 1974;AC-19(6);723-730.
- Graupe D., Сline W.K. Derivation of ARMA parameters and orders from pure AR models. Int. J. Syst. ScL. 1975;10(2);101-106.
- Isermann R., Baur V., Bamberger W., Kneppo P., Siebert H. Comparison of six on-line identification and parameter estimation methods. Automatica. 1974;10;81-103. [CrossRef]
- F., Tukey J. Data analysis and regression: A second course in statistics 1st edition. Pearson, 1977.
- Karabutov N.N. Frameworks application for estimation of Lyapunov exponents for systems with periodic coefficients. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(1):3-13. (In Russ.). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).