Submitted:
03 January 2024
Posted:
04 January 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction
- A.
- Background
- B.
- Purpose of the Literature Review
Methodology
Literatures
- A.
- Significance of Soybean Quality Evaluation
- B.
- Relevance of Electronic Nose Technology
- C.
- Fundamental Parameters Influencing Soybean Quality
- D.
- Principles of Electronic Nose Technology

- E.
- Impact of Electronic Nose On Soybean Quality Assessment
Synthesis
Accuracy of Electronic Nose
Precision of Electronic Nose
Summary
Conclusions
References
- Scudellari, M.; Meet the E-nose that actually sniffs. IEEE Spectrum. Available online: https://spectrum.ieee.org/meet-the-enose-that-actually-sniffs (accessed on 15 June 2023).
- Wilson, A.D.; Diverse applications of electronic-nose technologies in agriculture and Forestry. Sensors (Basel, Switzerland). Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649433/ (accessed on 8 February 2013).
- Pontecorvo, A.J.; Bourne, M.C. Simple methods for extending the shelf life of soy curd (tofu) in tropical areas. J. Food Sci. 1978, 43, 969–972. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. The book of Tofu; Ten Speed Press: Berkeley, CA, USA, 1983. [Google Scholar]
- Ananchaipattana, C.; et al. Bacterial Contamination of Soybean Curd (Tofu) Sold in Thailand. Food Sci. Technol. Res. 2012, 18, 843–848. [Google Scholar] [CrossRef]
- Foudad, K.; Hegeman, G. Microbial Spoilage of Tofu (Soybean Curd). J. Food Prot. 1993, 56, 1. [Google Scholar]
- Aulisio, C.C.G.; Stanfield, J.T.; Weagant, S.D.; Hill, W.E. Yersinosis associated with tofu consumption: serological, biochemical and pathogenicity studies of Yersinia enterocolitica isolates. J. Food Prot. 1983, 46, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.A.; Ostroff, S.M.; McGee, H.B.; Johnson, D.R.; Downes, F.P.; Cameron, D.N.; Bean, N.H.; Griffin, P.M. An outbreak of shigellosis at an outdoor music festival. Am. J. Epidemiol. 1991, 133, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Kovats, S.K.; Doyle, M.P.; Tanaka, N. Evaluation of the microbiological safety of tofu. I. Food Prot. 1984, 47, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Abraham, J. Microbial Contamination, Prevention, and Early Detection in the Food Industry. Science direct. 2018. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/electronic-nose.
- Lin, H.; et al.; Lightweight Residual Convolutional Neural Network for Soybean Classification Combined With Electronic Nose IEEE Sensors Journal. Available online: https://ieeexplore.ieee.org/document/9772641?fbclid=IwAR2S5ESDwJ0_PPwg3og1qxyRVB0J_7EJY10FF6TH3-uICwDariJu3dRmqBo (accessed on 15 June 2022).
- Yu, S.; Huang, X.; Wang, L.; Ren, Y.; Zhang, X.; Wang, Y. Characterization of selected Chinese soybean paste based on flavor profiles using HS-SPME-GC/MS, E-nose and E-tongue combined with chemo metrics. Science Direct. 2022. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0308814621028466.
- Jia, S. Effects of roasting level on physicochemical, sensory, and volatile profiles of soybeans using electronic nose and HS-SPME-GC–MS. Elsevier. 2021. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0308814620317428.
- Park, S.W.; Lee, S.J.; Sim, Y.S.; Choi, J.Y.; Park, E.Y.; Noh, B.S. Analysis of ethanol in soy sauce using an electronic nose for halal food certification. Food Sci. Biotechnol. 2017, 26, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Jessika, P.; Thanga Leela, S.; Sivamaruthi, B.S.; Bharathi, M.; Chaiyasut, C. Fermented foods and their role in respiratory health: A mini-review. Fermentation 2022, 8, 162. [Google Scholar] [CrossRef]
- Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angew. Chem. Int. Ed. 2014, 53, 7124–7143. [Google Scholar] [CrossRef] [PubMed]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A. Humans can discriminate more than 1 trillion olfactory stimuli. Science 2014, 343, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
- Calvi, E.; Quassolo, U.; Massaia, M.; Scandurra, A.; D’Aniello, B.; D’Amelio, P. The scent of emotions: A systematic review of human intra- and interspecific chemical communication of emotions. Brain Behav. 2020, 10, e01585. [Google Scholar] [CrossRef] [PubMed]
- Vieillard, S.; Ronat, L.; Baccarani, A.; Schaal, B.; Baudouin, J.Y.; Brochard, R. Age differences in olfactory affective responses: Evidence for a positivity effect and an emotional dedifferentiation. Aging Neuropsychol. Cogn. 2021, 28, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Md Noh, M.F.; Gunasegavan, R.D.N.; Khalid, N.M.; Balasubramaniam, V.; Mustar, S.; Rashed, A.A. Recent techniques in nutrient analysis for food composition databases. Molecules 2020, 25, 4567. [Google Scholar] [CrossRef] [PubMed]
- Mihafu, F.D.; Issa, J.Y.; Kamiyango, M.W. Implication of sensory evaluation and quality assessment in food product development: A review. Curr. Res. Nutr. Food Sci. 2020, 8, 690–702. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Zhu, L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. 2019, 289, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Evaluation of flavor characteristics of bacon smoked with different woodchips by HS-SPME-GC-MS combined with an electronic tongue and electronic nose. Meat Sci. 2021, 182, 108626. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, J.; Zhu, L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. 2019, 289, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.A. Encyclopedia of Dairy Sciences, 3rd ed.; Elsevier Science: Cambridge, MA, USA, 2022. [Google Scholar]
- Ma, R.; et., al. Combining e-nose and e-tongue for improved recognition of instant starch noodles seasonings. Frontiers. 2023. Available online: https://www.frontiersin.org/articles/10.3389/fnut.2022. Available online: https://www.frontiersin.org/articles/10.3389/fnut.2022.1074958/full#B10.
- Feyzioglu, A.; Taspinar, Y.S. Beef Quality Classification with Reduced E-Nose Data Features According to Beef Cut Types. Sensors 2023, 23, 2222. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; et al. Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue,and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish. Food Chem. 2023, 402, 134325. [Google Scholar] [CrossRef] [PubMed]
- Limbo, S.; Torri, L.; Sinelli, N.; Franzetti, L.; Casiraghi, E. Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat. Sci. 2010, 84, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Haddi, Z. Discrimination and identification of geographical origin virgin olive oil by an e-nose based on MOS sensors and pattern recognition techniques. Procedia Eng. 2011, 25, 1137–1140. [Google Scholar] [CrossRef]
- Sarno, R.; Triyana, K.; Sabilla, S.I.; Wijaya, D.R.; Sunaryono, D.; Fatichah, C. Detecting PorkAdulteration in Beef for Halal Authentication Using an Optimized Electronic Nose System. IEEE Access 2020, 8, 221700–221711. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xiao, H.; Liu, M. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sens. Actuators B Chem. 2009, 140, 378–382. [Google Scholar] [CrossRef]
- Pulluri, K.K.; Kumar, V.N. Development of an Integrated Soft E-Nose for Food Quality Assessment. IEEE Sens. J. 2022, 22, 15111–15122. [Google Scholar] [CrossRef]
- Pulluri, K.K.; Kumar, V.N. Wine Quality Assessment using Electronic Nose. In Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), August 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Laga, S.A.; Sarno, R. Temperature effect of electronic nose sampling for classifying mixture of beef and pork. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 1626. [Google Scholar] [CrossRef]
- Thazin, Y.; Eamsa-Ard, T.; Pobkrut, T.; Kerdcharoen, T. Formalin Adulteration Detection in Food Using E-nose based on Nanocomposite Gas Sensors. In Proceedings of the 2019 IEEE International Conference onConsumer Electronics—Asia (ICCE-Asia), June 2019; pp. 64–67. [Google Scholar] [CrossRef]
- Huang, C.; Gu, Y. A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose. Foods 2022, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Anzivino, R.; et al. The Role of a Polymer -Based E-Nose in the Detection of Head and Neck Cancer From Exhaled Breath. Sensors 2022, 22, 6485. [Google Scholar] [CrossRef]
- Ahmad, B.; Ashfaq, U.A.; Masoud, M.S.; Nahid, N.; Tariq, M.; Qasim, M. E-nose-based technology for healthcare. Nanotechnol.-Based E-Noses, 2023; 241–256. [Google Scholar] [CrossRef]
- Hee, Y. Comparison of a descriptive analysis and instrumental measurements (electronic nose and electronic tongue) for the sensory profiling of Korean fermented soybean paste (doenjang). Wiley. 2022. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/joss.12282.
- Li, Y.; Li, F.; Yu, L.; Sun, J.; Guo, L.; Dai, A.; Wang, B.; Huang, M.; Xu, X. Separate and combined detection of minced chicken meat adulterated with soy protein or starch using electronic nose and electronic tongue. Trans. Chin. Soc. Agric. Eng. 2020, 36, 309–316. [Google Scholar] [CrossRef]
- Ravi, R.; Taheri, A.; Khandekar, D.; Millas, R. Rapid Profiling of Soybean Aromatic Compounds Using Electronic Nose. Biosensors 2019, 9, 66. [Google Scholar] [CrossRef]
- Boué, S.M.; Shih, B.Y.; Carter-Wientjes, C.H.; Cleveland, T.E. Identification of Volatile Compounds in Soybean at Various Developmental Stages Using Solid Phase Microextraction. J. Agric. Food Chem. 2003, 51, 4873–4876. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Kumazawa, K.; Nishimura, O. Studies on the Key Aroma Compounds in Soy Milk Made from Three Different Soybean Cultivars. J. Agric. Food Chem. 2011, 59, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- Dias, T.; Santos, V.S.; Zorgani, T.; Ferreiro, N.; Rodrigues, A.I.; Zaghdoudi, K.; Veloso, A.C.A.; Peres, A.M. A Lab-Made E-Nose-MOS Device for Assessing the Bacterial Growth in a Solid Culture Medium. Biosensors 2023, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef] [PubMed]
- Thorn, R.M.S.; Reynolds, D.M.; Greenman, J. Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J. Microbiol. Meth. 2011, 84, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.D.J.; Sterk, P.J.; Schultz, M.J. Volatile metabolites of pathogens: A systematic review. PLoS Pathog. 2013, 9, e1003311. [Google Scholar] [CrossRef]
- Tait, E.; Perry, J.D.; Stanforth, S.P.; Dean, J.R. Identification of volatile organic compounds produced by bacteria using HS-SPMEGC-MS. J. Chromatogr. Sci. 2014, 52, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Freed, R.; Mandarino, J.; Waszczynskyj, N. Soybean Processing. In Soybeans: Chemistry, Production, Processing, and Utilization; Academic Press: Cambridge, MA, USA, 2019; pp. 481–532. [Google Scholar]
- Kent, R.; Sabo-Attwood, T.; Alves, M. Postharvest Management of Soybeans. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 661–677. [Google Scholar]
- McNeill, A.M.; Nelson, R.L.; Heatherly, L.G. Soybean Production. In The Soybean; Academic Press: Cambridge, MA, USA, 2018; pp. 1–4. [Google Scholar]
- Oladiran, J.A.; Ewansiha, S.U.; Adebo, O.A. Pests of Soybean and Their Management. In Advances in Plant Breeding Strategies: Legumes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 411–429. [Google Scholar]
- Specht, J.E.; Hume, D.J.; Kumudini, S.V.; Wright, D.L. Soybean. In Yield Gains in Major US Field Crops; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2014; pp. 111–141. [Google Scholar]
- Wilcox, J.R. Soybean Genetics and Breeding. In The Soybean; Academic Press: Cambridge, MA, USA, 2019; pp. 35–66. [Google Scholar]
- Wuebker, E.F.; Kandel, T.P.; Hurburgh, C.R., Jr. Soybean Quality Requirements for End Uses. In World Soybean Research Conference VI; Academic Press: Cambridge, MA, USA, 2018; pp. 127–143. [Google Scholar]
- Lin, H.; et al. Lightweight Residual Convolutional Neural Network for Soybean Classification Combined With Electronic Nose. IEEE Sens. J. 2022, 22, 11463–11473. [Google Scholar] [CrossRef]
- Sun, H.; Hua, Z.; Yin, C.; Li, F.; Shi, Y. Geographical traceability of soybean: An electronic nose coupled with an effective deep learning method. Food Chem. 2024, 440, 138207. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; An, L. A deep learning method combined with an electronic nose for gas information identification of soybean from different origins. Chemom. Intell. Lab. Syst. 2023, 240, 104906. [Google Scholar] [CrossRef]
- Cai, J.-S.; Zhu, Y.-Y.; Ma, R.-H.; Thakur, K.; Zhang, J.G.; Wei, Z.-J. Effects of roasting level on physicochemical, sensory, and volatile profiles of soybeans using electronic nose and HS-SPME-GC–MS. Food Chem. 2021, 340, 127880. [Google Scholar] [CrossRef] [PubMed]
- Ravi, R.; Taheri, A.; Khandekar, D.; Millas, R. Rapid Profiling of Soybean Aromatic Compounds Using Electronic Nose. Biosensors 2019, 9, 66. [Google Scholar] [CrossRef]
- Yu, S.; Huang, X.; Wang, L.; Ren, Y.; Zhang, X.; Wang, Y. Characterization of selected Chinese soybean paste based on flavor profiles using HS-SPME-GC/MS, E-nose and E-tongue combined with chemometrics. Food Chem. 2022, 375, 131840. [Google Scholar] [CrossRef]
- Shao, X.; Li, H.; Wang, N.; Zhang, Q. Comparison of Different Classification Methods for Analyzing Electronic Nose Data to Characterize Sesame Oils and Blends. Sensors 2015, 15, 26726–26742. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, S.N.; Nuringtyas, T.R.; Triyana, K. Electronic Nose Coupled with Chemometrics for Monitoring of Tempeh Fermentation Process. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia; 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Fitzgerald, J.E.; Bui, E.T.H.; Simon, N.M.; Fenniri, H. Artificial Nose Technology: Status and Prospects in Diagnostics. Trends Biotechnol. 2017, 35, 33–42. [Google Scholar] [CrossRef]
- Arakawa, T.; Iitani, K.; Toma, K.; Mitsubayashi, K. Biosensors: Gas Sensors. In Encyclopedia of Sensors and Biosensors, 1st; Narayan, R, Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 478–504. ISBN 9780128225493. [Google Scholar] [CrossRef]
- Kauer, J.S.; White, J. Electronic Nose. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 871–877. ISBN 9780080450469. [Google Scholar] [CrossRef]
- Ribeiro, C.M.; de Medeiros Strunkis, C.; Campos, P.V. Sensing Materials. In Encyclopedia of Sensors and Biosensors, 1st; Narayan, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 231–253. ISBN 9780128225493. [Google Scholar] [CrossRef]
- Cho, Y.S.; Jung, S.C.; Oh, S. Diagnosis of bovine tuberculosis using a metal oxide-based electronic nose. Lett. Appl. Microbiol. 2015, 60, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Seesaard, T.; Wongchoosuk, C. Recent Progress in Electronic Noses for Fermented Foods and Beverages Applications. Fermentation 2022, 8, 302. [Google Scholar] [CrossRef]
- Seesaard, T.; Lorwongtragool, P.; Kerdcharoen, T. Development of fabric-based chemical gas sensors for use as wearable electronic noses. Sensors 2015, 15, 1885–1902. [Google Scholar] [CrossRef] [PubMed]
- Kondee, S.; Arayawut, O.; Pon-On, W.; Wongchoosuk, C. Nitrogen-doped carbon oxide quantum dots for flexible humidity sensor: Experimental and SCC-DFTB study. Vacuum 2022, 195, 110648. [Google Scholar] [CrossRef]
- Traiwatcharanon, P.; Timsorn, K.; Wongchoosuk, C. Flexible room-temperature resistive humidity sensor based on silver nanoparticles. Mater. Res. Express 2017, 4, 085038. [Google Scholar] [CrossRef]
- Chaloeipote, G.; Samarnwong, J.; Traiwatcharanon, P.; Kerdcharoen, T.; Wongchoosuk, C. High-performance resistive humidity sensor based on Ag nanoparticles decorated with graphene quantum dots. R. Soc. Open Sci. 2021, 8, 210407. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Williams, B. Advances in sensor technologies for electronic noses. Sensors and Actuators B: Chemical 2017, 242, 573–588. [Google Scholar] [CrossRef]
- Johnson, M.; et al. Enhancing electronic nose accuracy through machine learning: A comprehensive review. Sensors 2019, 19, 2615. [Google Scholar] [CrossRef]
- Lee, S.; Patel, R. Innovations in material science for improved accuracy in electronic noses. Sens. Actuators B Chem. 2021, 330, 129341. [Google Scholar] [CrossRef]
- Brown, C.; et al. Optimization of sensor array configurations for enhanced accuracy in electronic noses. Anal. Chem. 2023, 95, 5361–5369. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Advances in sensor technologies for electronic noses: A review. Sensors 2018, 18, 1134. [Google Scholar] [CrossRef]
- Kim, J.; et al. Machine learning approaches for enhancing precision in electronic nose applications: A comprehensive review. Sens. Actuators B: Chem. 2020, 318, 128137. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q. Innovations in material science for improved precision in electronic noses: A review. Sens. Actuators B Chem. 2022, 351, 130886. [Google Scholar] [CrossRef]
- Wang, X.; et al. Optimization of sensor array configurations for enhanced precision in electronic noses. Anal. Chem. 2023, 97, 1906–1914. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Advances in sensor technologies for electronic noses: A review. Sensors 2018, 18, 1134. [Google Scholar] [CrossRef]
- Wilson, A.D.; et al. Recent developments in electronic nose sensor technology. Sens. Actuators B Chem. 2019, 202, 330–344. [Google Scholar] [CrossRef]
- Kim, J.; et al. Machine learning approaches for enhancing precision in electronic nose applications: A comprehensive review. Sens. Actuators B Chem. 2020, 318, 128137. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q. Innovations in material science for improved precision in electronic noses: A review. Sens. Actuators B Chem. 2022, 351, 130886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).