Submitted:
18 February 2024
Posted:
20 February 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Methodology
3. Results
4. Discussion
5. Conclusion
Authors’ contributions
Ethics approval
Competing interests
Funding
References
- Cazzola, M. Myelodysplastic Syndromes. N Engl J Med 2020, 383, 1358–1374. [Google Scholar] [CrossRef]
- Patel, S.S. Pediatric Myelodysplastic Syndromes. Clin Lab Med 2021, 41, 517–528. [Google Scholar] [CrossRef]
- Balaian, E.; Wobus, M.; Bornhäuser, M.; Chavakis, T.; Sockel, K. Myelodysplastic Syndromes and Metabolism. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef]
- Lauritsen, T.B.; Norgaard, J.M.; Dalton, S.O.; Gronbaek, K.; El-Galaly, T.C.; Ostgard, L.S.G. 10-year nationwide trends in incidence, treatment patterns, and mortality of patients with myelodysplastic syndromes in Denmark. Leuk Res 2023, 128, 107056. [Google Scholar] [CrossRef]
- Hosono, N. Genetic abnormalities and pathophysiology of MDS. Int J Clin Oncol 2019, 24, 885–892. [Google Scholar] [CrossRef]
- Ogawa, S. Genetics of MDS. Blood 2019, 133, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Cantor, J.R.; Sabatini, D.M. Cancer cell metabolism: one hallmark, many faces. Cancer discovery 2012, 2, 881–898. [Google Scholar] [CrossRef]
- Folmes, C.D.; Dzeja, P.P.; Nelson, T.J.; Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012, 11, 596–606. [Google Scholar] [CrossRef]
- Warburg, O. On respiratory impairment in cancer cells. Science 1956, 124, 269–270. [Google Scholar] [CrossRef]
- Hoff, F.W.; Madanat, Y.F. Molecular Drivers of Myelodysplastic Neoplasms (MDS)-Classification and Prognostic Relevance. Cells 2023, 12. [Google Scholar] [CrossRef]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.; Gralnick, H.R.; Sultan, C. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982, 51, 189–199. [Google Scholar] [CrossRef]
- Harris, N.L.; Jaffe, E.S.; Diebold, J.; Flandrin, G.; Muller-Hermelink, H.K.; Vardiman, J.; Lister, T.A.; Bloomfield, C.D. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. Report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November, 1997. Ann Oncol 1999, 10, 1419–1432. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Pellagatti, A.; Armstrong, R.N.; Steeples, V.; Sharma, E.; Repapi, E.; Singh, S.; Sanchi, A.; Radujkovic, A.; Horn, P.; Dolatshad, H.; et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood 2018, 132, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, G.S.; Pellagatti, A.; Agianian, B.; Smith, M.A.; Bhagat, T.D.; Gordon-Mitchell, S.; Sahu, S.; Pandey, S.; Shah, N.; Aluri, S.; et al. Activation of targetable inflammatory immune signaling is seen in myelodysplastic syndromes with SF3B1 mutations. Elife 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Dolatshad, H.; Pellagatti, A.; Fernandez-Mercado, M.; Yip, B.H.; Malcovati, L.; Attwood, M.; Przychodzen, B.; Sahgal, N.; Kanapin, A.A.; Lockstone, H.; et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 2015, 29, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Berastegui, N.; Ainciburu, M.; Romero, J.P.; Garcia-Olloqui, P.; Alfonso-Pierola, A.; Philippe, C.; Vilas-Zornoza, A.; San Martin-Uriz, P.; Ruiz-Hernández, R.; Abarrategi, A.; et al. The transcription factor DDIT3 is a potential driver of dyserythropoiesis in myelodysplastic syndromes. Nat Commun 2022, 13, 7619. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science signaling 2013, 6, pl1. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Tyner, J.W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al. Functional genomic landscape of acute myeloid leukaemia. Nature 2018, 562, 526–531. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Malcovati, L.; Tauro, S.; Gundem, G.; Van Loo, P.; Yoon, C.J.; Ellis, P.; Wedge, D.C.; Pellagatti, A.; et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013, 122, 3616–3627; quiz 3699. [Google Scholar] [CrossRef]
- Yoshida, K.; Sanada, M.; Shiraishi, Y.; Nowak, D.; Nagata, Y.; Yamamoto, R.; Sato, Y.; Sato-Otsubo, A.; Kon, A.; Nagasaki, M.; et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011, 478, 64–69. [Google Scholar] [CrossRef]
- IDH1 isocitrate dehydrogenase (NADP(+)) 1 [ Homo sapiens (human) ]. In.; 27-Aug-2023.
- IDH2 isocitrate dehydrogenase (NADP(+)) 2 [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- Welch, J.S.; Petti, A.A.; Miller, C.A.; Fronick, C.C.; O’Laughlin, M.; Fulton, R.S.; Wilson, R.K.; Baty, J.D.; Duncavage, E.J.; Tandon, B.; et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med 2016, 375, 2023–2036. [Google Scholar] [CrossRef] [PubMed]
- TET2 tet methylcytosine dioxygenase 2 [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- DNMT3A DNA methyltransferase 3 alpha [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- ASXL1 ASXL transcriptional regulator 1 [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- SF3B1 splicing factor 3b subunit 1 [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- SRSF2 serine and arginine rich splicing factor 2 [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- RUNX1 RUNX family transcription factor 1 [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- NPM1 nucleophosmin 1 [ Homo sapiens (human) ]. In.; 18-Aug-2023.
- IL1A interleukin 1 alpha [ Homo sapiens (human) ]. In.; 10-Oct-2023.
- OLR1 oxidized low density lipoprotein receptor 1 [ Homo sapiens (human) ]. In.; 10-Oct-2023.
- ADRA2B adrenoceptor alpha 2B [ Homo sapiens (human) ]. In.; 10-Oct-2023.
- ERFE erythroferrone [ Homo sapiens (human) ]. In.; 10-Oct-2023.
- SULT4A1 sulfotransferase family 4A member 1 [ Homo sapiens (human) ]. In.; 10-Oct-2023.
- Gangat, N.; Patnaik, M.M.; Tefferi, A. Myelodysplastic syndromes: Contemporary review and how we treat. Am J Hematol 2016, 91, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim Biophys Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Hu, G.; Luo, C.; Liang, Z. DNA methyltransferase inhibitors: an updated patent review (2012-2015). Expert Opin Ther Pat 2016, 26, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Tiwari, A.D.; Phillips, J.G.; Hasipek, M.; Grabowski, D.R.; Pagliuca, S.; Gopal, P.; Kerr, C.M.; Adema, V.; Radivoyevitch, T.; et al. A Therapeutic Strategy for Preferential Targeting of TET2 Mutant and TET-dioxygenase Deficient Cells in Myeloid Neoplasms. Blood Cancer Discov 2021, 2, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, G.; Mengucci, C.; Padella, A.; Fonzi, E.; Picone, G.; Delpino, C.; Nanni, J.; De Tommaso, R.; Franchini, E.; Papayannidis, C.; et al. Integrated genomic-metabolic classification of acute myeloid leukemia defines a subgroup with NPM1 and cohesin/DNA damage mutations. Leukemia 2021, 35, 2813–2826. [Google Scholar] [CrossRef]
- Kinnaird, A.; Zhao, S.; Wellen, K.E.; Michelakis, E.D. Metabolic control of epigenetics in cancer. Nature reviews Cancer 2016, 16, 694–707. [Google Scholar] [CrossRef]
- Thakur, C.; Chen, F. Connections between metabolism and epigenetics in cancers. Semin Cancer Biol 2019, 57, 52–58. [Google Scholar]
- Morrison, A.J. Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. Febs j 2022, 289, 1302–1314. [Google Scholar] [CrossRef] [PubMed]
- Lelièvre, P.; Sancey, L.; Coll, J.L.; Deniaud, A.; Busser, B. Iron Dysregulation in Human Cancer: Altered Metabolism, Biomarkers for Diagnosis, Prognosis, Monitoring and Rationale for Therapy. Cancers (Basel) 2020, 12. [Google Scholar] [CrossRef]
- Garcia, P.L.; Hossain, M.I.; Andrabi, S.A.; Falany, C.N. Generation and Characterization of SULT4A1 Mutant Mouse Models. Drug Metab Dispos 2018, 46, 41–45. [Google Scholar] [CrossRef]
- Hossain, M.I.; Marcus, J.M.; Lee, J.H.; Garcia, P.L.; Gagné, J.P.; Poirier, G.G.; Falany, C.N.; Andrabi, S.A. SULT4A1 Protects Against Oxidative-Stress Induced Mitochondrial Dysfunction in Neuronal Cells. Drug Metab Dispos 2019, 47, 949–953. [Google Scholar] [CrossRef]


| A | B | Neither | A Not B | B Not A | Both | p-Value | Tendency |
|---|---|---|---|---|---|---|---|
| SRSF2 | DNMT3A | 3026 | 379 | 816 | 39 | <0.001 | Mutual exclusivity |
| ASXL1 | DNMT3A | 3014 | 391 | 810 | 45 | <0.001 | Mutual exclusivity |
| JAK2 | DNMT3A | 3110 | 295 | 814 | 41 | <0.001 | Mutual exclusivity |
| TP53 | DNMT3A | 3063 | 342 | 796 | 59 | 0.002 | Mutual exclusivity |
| NCT Number | Study Status | Conditions | Targeted Biological Process | Interventions/Drugs/Procedure |
|---|---|---|---|---|
| NCT04493164 | Recruiting | MDS/AML | Mutant IDH1 Inhibitor | Ivosidenib/Liposome-encapsulated Daunorubicin-Cytarabine |
| NCT03503409 | Recruiting | MDS/AML | Mutant IDH1 Inhibitor | AG-120 |
| NCT03744390 | Recruiting | MDS/AML | Mutant IDH2 Inhibitor | AG-221 |
| NCT04827719 | Recruiting | MDS/AML | High-dose cytarabine delivery | BST-236 |
| NCT04279847 | Recruiting | MDS | BET inhibitor and JAK inhibitor | INCB057643/Ruxolitinib |
| NCT04140487 | Recruiting | MDS/AML | FLT3 tyrosine kinase inhibitors and DNA Methylation and synthesis Inhibitor | Azacitidine/Gilteritinib/Venetoclax |
| NCT05010122 | Recruiting | MDS/AML | FLT3 tyrosine kinase inhibitor and DNMT1 Inhibitor | Decitabine and Cedazuridine/Gilteritinib/Venetoclax |
| NCT03661307 | Recruiting | MDS/AML | DNMT1 Inhibitor and FLT3 tyrosine kinase inhibitor | Decitabine/Quizartinib/Venetoclax |
| NCT03683433 | Recruiting | MDS/AML/CML | DNA Methylation and synthesis Inhibitor and Mutant IDH Inhibitor | Azacitidine/Enasidenib Mesylate |
| NCT05636514 | Recruiting | MDS/AML/CML | FLT3 tyrosine kinase inhibitor and FAK inhibitor | Decitabine-Cedazuridine 35 Mg-100 Mg ORAL TABLET/Defactinib |
| NCT04493138 | Recruiting | MDS/CML | DNMT1 Inhibitor and FLT3 tyrosine kinase inhibitor | Azacitidine/Quizartinib |
| NCT05817955 | Recruiting | MDS | DNA Methylation and synthesis Inhibitor and JAK Inhibitor | Azacitidine (AZA) with Ruxolitinib |
| NCT04803721 | Recruiting | MDS | ||
| NCT04250051 | Recruiting | MDS/AML | Mutant IDH1 Inhibitor | Cytarabine/Filgrastim/Fludarabine/Fludarabine Phosphate/Ivosidenib |
| NCT04167917 | Recruiting | MDS/AML/CML | DNA methyltransferase 1 (DNMT1) inhibition | NTX-301 |
| NCT04187703 | Recruiting | MDS | DNA methyltransferase (DNMT) inhibition | 5-azacytidine/Decitabine |
| NCT05282459 | Recruiting | MDS | Mutant IDH2 Inhibitor | Enasidenib mesylat dose escalation |
| NCT04741945 | Recruiting | MDS | Antihyperglycemic | Metformin |
| NCT04477291 | Recruiting | MDS/AML | FLT3 Inhibitor | CG-806 |
| NCT03839771 | Recruiting | MDS/AML | Mutant IDH1 Inhibitor and Mutant IDH2 Inhibitor | AG-120/Placebo for AG-120/AG-221/Placebo for AG-221 |
| NCT05030675 | Recruiting | MDS/CML | Tyrosine kinase inhibitor | Fostamatinib |
| NCT03953898 | Recruiting | MDS/AML | poly (ADP-ribose) polymerase (PARP) inhibitor | Biospecimen Collection/Bone Marrow Aspiration/Olaparib |
| NCT03999723 | Recruiting | MDS/AML/CML | s | Vitamin C/Placebo |
| NCT04764474 | Recruiting | Hematological Malignancies With IDH mutations | Mutant IDH1/2 Inhibitor | HMPL-306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
