Submitted:
20 February 2024
Posted:
27 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Alcohol Dependence and ncRNA
3. Alcohol Dependence and m6A Modification of RNAs
4. Individual Epigenetic Mechanisms for Alcohol Dependency
5. A Relationship between Gut Microbiota and Alcohol Dependency
6. A Possible Tactic with Alteration of Gut Microbiota against Alcohol Dependency
7. Future Perspectives
8. Conclusion
Abbreviations
| BBB | blood-brain barrier |
| BDNF | brain-derived neurotrophic growth factor |
| CNS | central nervous system |
| circRNA | circular RNA |
| FMT | fecal microbiota transplantation |
| HDAC | histone deacetylase |
| lncRNAs | long non-coding RNAs |
| mRNA | messenger RNA |
| m6A | methylation of N6 adenosine |
| ncRNA | non-coding RNA |
| NF-kB | nuclear factor kappa B |
| NPY | neuropeptide Y |
| piRNAs | piwi interacting RNAs |
| siRNAs | small interfering RNAs |
| ROS | reactive oxygen species |
| SCFAs | short-chain fatty acids |
| siRNA | short interference RNA |
| R-ketamine | arketamine |
| S-ketamine | esketamine |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ducci, F.; Goldman, D. Genetic approaches to addiction: genes and alcohol. Addiction. 2008, 103, 1414–1428. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, AF.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. The Lancet. 2019, 394, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Shield, KD. Global burden of disease and the impact of mental and addictive disorders. Current psychiatry reports. 2019, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hasin, DS.; Wall, M.; Witkiewitz, K.; Kranzler, HR.; Falk, D.; Litten, R.; et al. Change in non-abstinent WHO drinking risk levels and alcohol dependence: a 3 year follow-up study in the US general population. The Lancet Psychiatry. 2017, 4, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, RD. Emerging roles for ncRNAs in alcohol use disorders. Alcohol. 2017, 60, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Slack, FJ.; Chinnaiyan, AM. The role of non-coding RNAs in oncology. Cell. 2019, 179, 1033–1055. [Google Scholar] [CrossRef] [PubMed]
- Wu, YY.; Kuo, HC. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. Journal of Biomedical Science. 2020, 27, 1–23. [Google Scholar] [CrossRef]
- Anastasiadou, E.; Jacob, LS.; Slack, FJ. Non-coding RNA networks in cancer. Nature Reviews Cancer. 2018, 18, 5–18. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-coding RNAs and their Integrated Networks. Journal of integrative bioinformatics. 2019, 16, 20190027. [Google Scholar] [CrossRef]
- Wang, JQ.; Liu, YR.; Xia, QR.; Liang, J.; Wang, JL.; Li, J. Functional roles, regulatory mechanisms and theranostics applications of ncRNAs in alcohol use disorder. Int J Biol Sci. 2023, 19, 1316–1335. [Google Scholar] [CrossRef]
- Wei, JW.; Huang, K.; Yang, C.; Kang, CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017, 37, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Berkel, TD.; Pandey, SC. Emerging Role of Epigenetic Mechanisms in Alcohol Addiction. Alcohol Clin. Exp. Res. 2017, 41, 666–680. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Hu, R.; Pei, G.; Zhang, H.; Zhao, Z.; Jia, P. Diverse types of genomic evidence converge on alcohol use disorder risk genes. J. Med. Genet. 2020, 57, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, F.; Rosato, AJ.; Farrer, LA.; Henderson, DC.; Zhang, H. Prefrontal cortex eQTLs/mQTLs enriched in genetic variants associated with alcohol use disorder and other diseases. Epigenomics. 2020, 12, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, Y.; Zhang, Y.; Wang, Q.; Miao, Q.; Xu, Y.; et al. Correlation between the epigenetic modification of histone H3K9 acetylation of NR2B gene promoter in rat hippocampus and ethanol withdrawal syndrome. Mol. Biol. Rep. 2019, 46, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Santos-Bezerra, DP.; Cavaleiro, AM.; Santos, AS.; Suemoto, CK.; Pasqualucci, CA.; Jacob-Filho, W.; et al. Alcohol Use Disorder is Associated with Upregulation of MicroRNA-34a and MicroRNA-34c in Hippocampal Postmortem Tissue. Alcoholism: Clinical and Experimental Research. 2021; 45, 64–68. [Google Scholar]
- Karabegović, I.; Abozaid, Y.; Maas, SCE.; Labrecque, J.; Bos, D.; De, Knegt, RJ.; et al. Plasma microRNA signature of alcohol consumption: the Rotterdam Study. J Nutr. 2023, 152, 2677–2688.
- Pandey, SC. A critical role of brain-derived neurotrophic factor in alcohol consumption. Biological psychiatry. 2016, 79, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Van, Booven, D.; Mengying, Li.; Sunil, Rao, J.; Blokhin, IO.; Dayne, Mayfield, R.; Barbier, E.; et al. Alcohol use disorder causes global changes in splicing in the human brain. Translational psychiatry. 2021, 11, 2. [CrossRef]
- Farris, SP.; Mayfield, RD. RNA-Seq reveals novel transcriptional reorganization in human alcoholic brain. International review of neurobiology. 2014, 116, 275–300. [Google Scholar]
- Liu, Y.; Li, J.; Bu, H.; Wang, H.; Zhang, Y.; Shen, Q.; et al. Circular RNA expression alteration identifies a novel circulating biomarker in serum exosomal for detection of alcohol dependence. Addiction Biology. 2021, 26, e13031. [Google Scholar] [CrossRef]
- Vornholt, E.; Drake, J.; Mamdani, M.; McMichael, G.; Taylor, ZN.; Bacanu, SA.; et al. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addiction biology. 2021, 26, e13071. [Google Scholar] [CrossRef] [PubMed]
- Mohebbati, R.; Sadeghnia, HR. The Role of microRNAs in Alcoholism: A Meta-analytic Review. Curr Pharm Des. 2022, 28, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Goldman, D. Role of RNA modifications in brain and behavior. Genes Brain Behav. 2018, 17, e12444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, W.; Sun, L.; Lin, Y.; Tian, M. Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res. 2023, 48, 1997–2016. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 2014, 10, 93–95. [Google Scholar] [CrossRef]
- Enge,l M; Eggert, C.; Kaplick, PM.; Eder, M.; Röh, S.; Tietze, L.; et al. The role of m(6)A/m-RNA methylation in stress Response regulation. Neuron 2018, 99, 389–403. e9. [CrossRef] [PubMed]
- Liu, Y.; Koo, JS.; Zhang, H. Chronic intermittent ethanol exposure-induced m6A modifications around mRNA stop codons of opioid receptor genes. Epigenetics. 2024, 19, 2294515. [Google Scholar] [CrossRef]
- Bohnsack, JP.; Teppen, T.; Kyzar, EJ.; Dzitoyeva, S.; Pandey, SC. The lncRNA BDNF-AS is an epigenetic regulator in the human amygdala in early onset alcohol use disorders. Transl Psychiatry. 2019, 9, 34. [Google Scholar] [CrossRef]
- Khani-Habibabadi, F.; Zare, L.; Sahraian, MA.; Javan, M.; Behmanesh, M. Hotair and Malat1 Long Noncoding RNAs Regulate Bdnf Expression and Oligodendrocyte Precursor Cell Differentiation. Mol Neurobiol. 2022, 59, 4209–4222. [Google Scholar] [CrossRef]
- Lv, J.; Xing, L.; Zhong, X.; Li, K.; Liu, M.; Du, K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother. 2023, 162, 114583. [Google Scholar] [CrossRef]
- Du, T.; Rao, S.; Wu, L.; Ye, N.; Liu, Z.; Hu, H.; et al. An association study of the m6A genes with major depressive disorder in Chinese Han population. J. Affect Disord. 2015, 183, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Wang, DO.; Gururajan, A. The m6A-methylome in major depression: A bioinformatic analysis of publicly available datasets. Psychiatry Res. Commun. 2022, 2, 100089. [Google Scholar] [CrossRef]
- Engel, M.; Eggert, C.; Kaplick, PM.; Eder, M.; Röh, S.; Tietze, L.; et al. The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron. 2018; 99, 389–403.e9. [Google Scholar]
- Lei, C.; Wang, Q. The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders. Int J Mol Sci. 2022, 23, 5922. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Liu, Z.; Xu, Y.; Liu, X.; Wang, D.; Li, F.; et al. Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Front. Neurosci. 2020, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Daviet, R.; Aydogan, G.; Jagannathan, K.; Spilka, N.; Koellinger, PD.; Koellinger, PD.; et al. Associations between alcohol consumption and gray and white matter volumes in the UK biobank. Nat. Commun. 2022, 13, 1175. [Google Scholar] [CrossRef] [PubMed]
- McCaul, ME.; Hutton, HE.; Stephens, MA.; Xu, X.; Wand, GS. Anxiety, anxiety sensitivity, and perceived stress as predictors of recent drinking, alcohol craving, and social stress response in heavy drinkers. Alcohol. Clin. Exp. Res. 2017, 41, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Boden, JM.; Fergusson, DM. Alcohol and depression. Addiction. 2011, 106, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Aslkhodapasandhokmabad, H.; Zhou, Y.; Ren, J. Epigenetic modification in alcohol-related liver diseases. Med Res Rev. 2022, 42, 1463–1491. [Google Scholar] [CrossRef]
- Martins de Carvalho, L.; Chen, WY.; Lasek, AW. Epigenetic mechanisms underlying stress-induced depression. Int Rev Neurobiol. 2021, 156, 87–126. [Google Scholar]
- Misztak, P.; Panczyszyn-Trzewik, P.; Sowa-Kucma, M. Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep, 2018; 70, 398–408. [Google Scholar]
- Boers, R.; Boers, J.; de Hoon, B.; Kockx, C.; Ozgur, Z.; Molijn, A.; et al. Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPI. Genome Res. 2018, 28, 88–99. [Google Scholar] [CrossRef]
- Palmisano, M.; Pandey, SC. Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol. 2017, 60, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, GN.; Fiore, M. et al. How alcohol drinking affects our genes: An epigenetic point of view. Biochem. Cell Biol. 2019; 97, 345–356. [Google Scholar]
- Maier, HB.; Neyazi, M.; Neyazi, A.; Hillemacher, T.; Pathak, H.; Rhein, M.; et al. Alcohol consumption alters Gdnf promoter methylation and expression in rats. J Psychiatr Res. 2020, 121, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mahna, D.; Puri, S.; Sharma, S. DNA methylation signatures: Biomarkers of drug and alcohol abuse. Mutat. Res. 2018, 777, 19–28. [Google Scholar] [CrossRef]
- Berkel, TDM; Zhang, H.; Teppen, T.; Sakharkar, AJ.; Pandey, SC. Essential role of histone methyltransferase G9a in rapid tolerance to the anxiolytic effects of ethanol. Int. J. Neuropsychopharmacol. 2019, 22, 292–302. [CrossRef] [PubMed]
- Jarmasz, JS.; Stirton, H.; Basalah, D.; Davie, JR.; Clarren, SK.; Astley, SJ.; et al. Global DNA methylation and histone posttranslational modifications in human and nonhuman primate brain in association with prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 2019, 43, 1145–1162. [Google Scholar] [CrossRef] [PubMed]
- Chen, WY.; Zhang, H.; Gatta, E.; Glover, EJ.; Pandey, SC.; Lasek, AW. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal. Alcohol. 2019, 78, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Quagebeur, R.; Dalile, B.; Raes, J.; Van Oudenhove, L.; Verbeke, K.; Vrieze, E. The role of short-chain fatty acids (SCFAs) in regulating stress responses, eating behavior, and nutritional state in anorexia nervosa: protocol for a randomized controlled trial. J Eat Disord. 2023, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Chachra, P.; Kennedy, P.; Pena, CJ.; Desouza, LA.; Nestler, EJ.; et al. Hippocampal HDAC4 contributes to postnatal fluoxetine-evoked depression-like behavior. Neuropsychopharmacology, 2014; 39, 2221–2232. [Google Scholar]
- Ardizzone, A.; Capra, AP.; Repici, A.; Lanza, M.; Bova, V.; Palermo, N.; et al. Rebalancing NOX2/Nrf2 to limit inflammation and oxidative stress across gut-brain axis in migraine. Free Radic Biol Med. 2024, 213, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Zalar, B.; Haslberger, A.; Peterlin, B. The Role of Microbiota in Depression - a brief review. Psychiatr Danub. 2018, 30, 136–141. [Google Scholar] [CrossRef]
- Woo, V.; Alenghat, T. Host–microbiota interactions: epigenomic regulation. Curr. Opin. Immunol. 2017, 44, 52–60. [Google Scholar] [CrossRef]
- Arner, P.; Kulyté, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol. 2015, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhang, P.; Luo, J.; Shen, L.; Zhang, S.; Gu, H.; et al. Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family. Gut Microbes. 2021, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yang, L.; Liu, Y.; Yan, R.; Wang, R.; Zhang, P.; et al. Butyrate suppresses atherosclerotic inflammation by regulating macrophages and polarization via GPR43/HDAC-miRNAs axis in ApoE-/- mice. PLoS One. 2023, 18, e0282685. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, ST.; Abdullah, SR.; Hussen, BM.; Younis, YM.; Rasul, MF.; Taheri, M. Role of circular RNAs and gut microbiome in gastrointestinal cancers and therapeutic targets. Noncoding RNA Res. 2023, 9, 236–252. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Chen, J.; Li, Y.; Kuang, Z.; Dende, C.; et al. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science. 2023, 381, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Fardi, F.; Khasraghi, LB.; Shahbakhti, N.; Salami Naseriyan, A.; Najafi, S.; Sanaaee, S.; et al. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Res Clin Pract. 2023, 201, 110739. [Google Scholar] [CrossRef] [PubMed]
- Jabs, S.; Biton, A.; Bécavin, C.; Nahori, MA.; Ghozlane, A.; Pagliuso, A.; et al. Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver. Nat Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, Z.; Xue, M.; Zhao, BS.; Harder, O.; Li, A.; et al. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat. Microbiol. 2020, 5, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Kim, HJ.; Jeon, HJ.; Kim, JY.; Shim, JJ.; Lee, JH. Lactiplantibacillus plantarum HY7718 Improves Intestinal Integrity in a DSS-Induced Ulcerative Colitis Mouse Model by Suppressing Inflammation through Modulation of the Gut Microbiota. Int J Mol Sci. 2024, 25, 575. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Chen, W.; Shi, H.; Eren, AM.; Morozov, A.; et al. Transcriptome-wide reprogramming of N(6)-methyladenosine modification by the mouse microbiome. Cell Res. 2019, 29, 167–170. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, F.; Han, S.; Li, S.; Zhao, Y.; Wang, H.; et al. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacology & Therapeutics. 2022; 236, 108215. [Google Scholar]
- Liu, Y.; Zhang, H. RNA m6A Modification Changes in Postmortem Nucleus Accumbens of Subjects with Alcohol Use Disorder: A Pilot Study. Genes (Basel). 2022, 13, 958. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Liu, M.; Zhang, J.; Zhong, X.; Zhong, C. YTHDF1 Attenuates TBI-Induced Brain-Gut Axis Dysfunction in Mice. Int J Mol Sci. 2023, 24, 4240. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, CL.; Doifode, T.; Rezende, VL.; Costa, MA.; Rhoads, JM.; Soutullo, CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci. 2024, 337, 122357. [Google Scholar] [CrossRef] [PubMed]
- Fuenzalida, C.; Dufeu, MS.; Poniachik, J.; Roblero, JP.; Valenzuela-Pérez, L.; Beltrán, CJ. Probiotics-based treatment as an integral approach for alcohol use disorder in alcoholic liver disease. Front Pharmacol. 2021, 12, 729950. [Google Scholar] [CrossRef] [PubMed]
- Walker, JR.; Korte, JE.; McRae-Clark, AL.; Hartwell, KJ. Adherence across FDA-approved medications for alcohol use disorder in a Veterans Administration population. J Stud Alcohol Drugs. 2019, 80, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, KS.; Peterson, VL.; Halfon, O.; Ahern, G.; Fouhy, F.; Stanton, C.; et al. Gut microbiome correlates with altered striatal dopamine receptor expression in a model of compulsive alcohol seeking. Neuropharmacology. 2018, 141, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Flores-Bastías, O.; Karahanian, E. Neuroinflammation produced by heavy alcohol intake is due to loops of interactions between Toll-like 4 and TNF receptors, peroxisome proliferator-activated receptors and the central melanocortin system: A novel hypothesis and new therapeutic avenues. Neuropharmacology. 2018, 128, 401–407. [Google Scholar] [CrossRef]
- Wolstenholme, JT.; Duong, NK.; Brocato, ER.; Bajaj, JS. Gut-Liver-Brain Axis and Alcohol Use Disorder: Treatment Potential of Fecal Microbiota Transplantation. Alcohol Res. 2024, 44, 01. [Google Scholar] [CrossRef]
- Meng, Y.; Sun, J.; Zhang, G. Pick fecal microbiota transplantation to enhance therapy for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2024, 128, 110860. [Google Scholar] [CrossRef]
- Hashimoto, K. Neuroinflammation through the vagus nerve-dependent gut-microbiota-brain axis in treatment-resistant depression. Prog Brain Res. 2023, 278, 61–77. [Google Scholar]
- Kalkman, HO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine. Biomedicines. 2023, 11, 2664. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, Y.; Zhou, H.; Lu, H.; Zhang, Y.; Hua, J.; et al. Esketamine is neuroprotective against traumatic brain injury through its modulation of autophagy and oxidative stress via AMPK/mTOR-dependent TFEB nuclear translocation. Exp Neurol. 2023, 366, 114436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, W.; Lin, H.; Gu, X.; Xie, H. The effects of esketamine on the intestinal microenvironment and intestinal microbiota in mice. Hum Exp Toxicol. 2023, 42, 9603271231211894. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, L.; Chang, L.; Shan, J.; Qu, Y.; Wang, X.; et al. A role of microRNA-149 in the prefrontal cortex for prophylactic actions of (R)-ketamine in inflammation model. Neuropharmacology. 2022, 219, 109250. [Google Scholar] [CrossRef] [PubMed]
- Delalle, I. MicroRNAs as Candidates for Bipolar Disorder Biomarkers. Psychiatr Danub. 2021, 33, 451–455. [Google Scholar] [PubMed]
- Choi, JL.; Kao, PF.; Itriago, E.; Zhan, Y.; Kozubek, JA.; Hoss, AG.; et al. miR-149 and miR-29c as candidates for bipolar disorder biomarkers. Am J Med Genet B Neuropsychiatr Genet. 2017, 174, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Suga, N.; Ikeda, Y.; Yoshikawa, S.; Taniguchi, K.; Sawamura, H.; Matsuda, S. Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update. Genes. 2023, 14, 1736. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, M.; Suga, N.; Ikeda, Y.; Yoshikawa, S.; Matsuda, S. Circular RNAs, Noncoding RNAs, and N6-methyladenosine Involved in the Development of MAFLD. Non-Coding RNA. 2024, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Ezquer, F.; Quintanilla, ME.; Morales, P.; Santapau, D.; Munita, JM.; Moya-Flores, F.; et al. A dual treatment blocks alcohol binge-drinking relapse: Microbiota as a new player. Drug Alcohol Depend. 2022, 236, 109466. [Google Scholar] [CrossRef]
- Cooper, TE.; Khalid, R.; Chan, S.; Craig, JC.; Hawley, CM.; Howell, M.; et al. Synbiotics, prebiotics and probiotics for people with chronic kidney disease. Cochrane Database Syst. Rev. 2023, 10, CD013631. [Google Scholar]
- Yacoub, R.; Nadkarni, GN.; McSkimming, DI.; Chaves, LD.; Abyad, S.; Bryniarski, MA.; et al. Fecal microbiota analysis of polycystic kidney disease patients according to renal function: A pilot study. Exp. Biol. Med. 2019, 244, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhu, YJ.; Zhou, YX.; Ding, J.; Liu, JY. Metformin in therapeutic applications in human diseases: Its mechanism of action and clinical study. Mol. Biomed. 2022, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, A.; Ikeda, Y.; Yoshikawa, S.; Taniguchi, K.; Sawamura, H.; Morikawa, S.; Nakashima, M.; Asai, T.; Matsuda, S. The Tryptophan and Kynurenine Pathway Involved in the Development of Immune-Related Diseases. Int. J. Mol. Sci. 2023, 24, 5742. [Google Scholar] [CrossRef] [PubMed]
- Håvik, B.; Røkke, H.; Dagyte, G.; Stavrum, A.K.; Bramham, C.R.; Steen, V.M. Synaptic activity-induced global gene expression patterns in the dentate gyrus of adult behaving rats: Induction of immunity-linked genes. Neuroscience. 2007, 148, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Taniguchi, K.; Yoshikawa, S.; Sawamura, H.; Tsuji, A.; Matsuda, S. A budding concept with certain microbiota, anti-proliferative family proteins, and engram theory for the innovative treatment of colon cancer. Explor Med. 2022, 3, 468–478. [Google Scholar] [CrossRef]
- Suga, N.; Ikeda, Y.; Yoshikawa, S.; Taniguchi, K.; Sawamura, H.; Matsuda, S. In Search of a Function for the N6-Methyladenosine in Epitranscriptome, Autophagy and Neurodegenerative Diseases. Neurol. Int. 2023, 15, 967–979. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
