Submitted:
28 March 2024
Posted:
02 April 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Gravimetric Composition of Urban Solid Waste
3. Sample Pretreatment and Laboratory Determinations
3.1. Experimental Procedure
3.1.1. Pyrolysis Process Experimental Apparatus
3.1.2. Experimental Procedures
3.2. Physicochemical and Chemical Composition of Bio-Oil
3.2.1. Physicochemical Characterization of Bio-Oil and Aqueous Phase
3.2.2. Chemical Composition of Bio-Oil and Aqueous Phase
3.3. Characterization of Biochar
3.3.1. SEM and EDS Analysis
3.3.2. Análise de Difratometria de Raios-X (DRX)
3.4. Yields of Bench-Scale Thermal and Catalytic Pyrolysis Experiments
4. Results
4.1. Characterization of Biochar
4.1.1. SEM Analysis
4.1.2. EDS Analysis
4.1.3. XRD Analysis
4.2. Pyrolysis of MHSW Fraction (Organic Matter + Paper+Plastic) in Fixed Bed Reactor
4.2.1. Process Conditions, Mass Balances, and Yields of Reaction Products
4.2.1.1. Influence of Pyrolysis Temperature
4.2.1.2. Influence of the FCC Catalyst on the Pyrolysis Process
4.2.2. Physicochemical and Compositional Characterization of Bio-Oil
4.2.2.1. Acidity of Bio-Oil
4.2.3. FT-IR of Bio-Oil



4.2.3.1. Chemical Composition of Bio-Oil
| Temperature [°C] | Concentration [%area.] | |
|---|---|---|
| Oxygenates | Nitrogenates | |
| 400 | 75.89 | 24.11 |
| 450 | 62.67 | 37.33 |
| 475 | 36.12 | 63.88 |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- S. Nanda, F. Berruti Thermochemical conversion of plastic waste to fuels: a review. Environ. Chem. Lett., 19 (2021), pp. 123-148; [CrossRef]
- M. Gholizadeh, C. Li, S. Zhang, Y. Wang, N. Shengli, Y. Li, X. Hu. Progress of the development of reactors for pyrolysis of municipal waste. Sustain. Energy Fuels, 4 (2020), pp. 5885-5915. [CrossRef]
- S. Kaza, L. Yao, P. Bhada-Tata, V.F. Woerden What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank (2018).
- PROGRAMA DAS NAÇÕES UNIDAS PARA O DESENVOLVIMENTO (PNUD). Acompanhando a agenda 2030 para o desenvolvimento sustentável: subsídios iniciais do Sistema Nações Unidas no Brasil sobre a identificação de indicadores nacionais referentes aos objetivos de desenvolvimento sustentável/ Programa das Nações Unidas para o Desenvolvimento. Brasília: PNUD, 2015. Disponível em Acesso em 10.mar.2018.
- S. Alam, K.S. Rahman, M. Rokonuzzaman, P.A. Salam, M.S. Miah, N. Das, S. Chowdhury, S. Channumsin, S. Sreesawet, M. Channumsin. Selection of Waste to Energy Technologies for Municipal Solid Waste Management—Towards Achieving Sustainable Development Goals. Sustainability, 14 (19) (2022), p. 11913; [CrossRef]
- M. Struk, M. Boďa. Factors influencing performance in municipal solid waste management - a case study of Czech municipalities. Waste Manag., 139 (2022), pp. 227-249; [CrossRef]
- ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS – ABRELPE. Panorama 2022. São Paulo: ABRELPE, 2023.
- SILVA, Diego Rodrigues Borges da; COSTA FILHO, Itair da Silva; SOUZA, Waryson Carlos Silva de; SANTOS, Filippe Vilhena dos; MACHADO, Paulo Christian de Freitas; BRANDÃO, Isaque Wilkson de Sousa; PEREIRA, Filipe Castro; ASSUNÇÃO, Maurilo André da Cunha; SILVA, Rafael Haruo Yoshida; RUSSO, Mario Augusto Tavares; MENDONÇA, Neyson Martins. Aspectos Quantitativos e Qualitativos de Resíduos Sólidos Urbanos nos Municípios de Ananindeua, Belém e Marituba. In: PEREIRA, Christiane; FRICKE, Klaus (coord.). Cooperação Intersetorial e Inovação: ferramentas para a gestão sustentável de resíduos sólidos. Braunschweig: Technische Universität Braunschweig, 2022.
- Aman Kumar, Ekta Singh, Rahul Mishra, Shang Lien Lo, Sunil Kumar. Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity. Energy. Volume 275,2023, 127471. ISSN 0360-5442. [CrossRef]
- BRASIL. Lei nº 12.305, de 02 de agosto de 2010 - Instituí a Política Nacional de Resíduos Sólidos. Brasília, 2010.
- Rodrigo Custodio Urban, Liane Yuri Kondo Nakada. COVID-19 pandemic: Solid waste and environmental impacts in Brazil. Science of The Total Environment. Volume 755, Part 1. 2021,142471,ISSN 0048-9697. [CrossRef]
- Ram Kumar Ganguly, Susanta Kumar Chakraborty, Plastic waste management during and post Covid19 pandemic: Challenges and strategies towards circular economy,Heliyon, Volume 10, Issue 4, 2024, e25613, ISSN 2405-8440. [CrossRef]
- Leilei Dai, Nan Zhou, Yuancai Lv, Yanling Cheng, Yunpu Wang, Yuhuan Liu, Kirk Cobb, Paul Chen, Hanwu Lei, Roger Ruan. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Progress in Energy and Combustion Science, Volume 93, 2022,101021, ISSN 0360-1285. [CrossRef]
- Nawaz, P. Kumar. Optimization of process parameters of Lagerstroemia speciosa seed hull pyrolysis using a combined approach of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) for renewable fuel production. Bioresour. Technol. Reports., 18 (2022). [CrossRef]
- Ahmad Nawaz, Shaikh Abdur Razzak. Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects. Renewable Energy. Volume 224, 2024, 120103, ISSN 0960-1481. [CrossRef]
- Yi Mei Zhang, Guo He Huang, Li He. An inexact reverse logistics model for municipal solid waste management systems. Journal of Environmental Management, Volume 92, Issue 3, 2011, Pages 522-530, ISSN 0301-4797. [CrossRef]
- Perla Calil Pongeluppe Wadhy Rebehy, Alexandre Pereira Salgado Junior, Aldo Roberto Ometto, Diego de Freitas Espinoza, Efigenia Rossi, Juliana Chiaretti Novi. Municipal solid waste management (MSWM) in Brazil: Drivers and best practices towards to circular economy based on European Union and BSI. Journal of Cleaner Production. Volume 401, 2023, 136591, ISSN 0959-6526. [CrossRef]
- Ferreira, C.; Costa, E.; de Castro, D.; Pereira, M.; Mâncio, A.; Santos, M.; Lhamas, D.; da Mota, S.; Leão, A.; Duvoisin, S., Jr.; et al. Deacidification of organic liquid products by fractional distillation in laboratory and pilot scales. J. Anal. Appl. Pyrolysis 2017, 127, 468–489. [Google Scholar] [CrossRef]
- Hussein, I. Abdel-Shafy, Mona S.M. Mansour, Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum. Volume 27, Issue 4. 2018. Pages 1275-1290, ISSN 1110-0621. [CrossRef]
- Silva, Rodrigo Cândido Passos da; COSTA, Amanda Rodrigues Santos; Eldeir, Soraya Giovanetti; Jucá, José Fernando Thomé. Setorização de rotas de coleta de resíduos sólidos domiciliares por técnicas multivariadas: estudo de caso da cidade do Recife, Brasil. Engenharia Sanitária e Ambiental, v. 25, n. 6, p. 821-832, 2020. [CrossRef]
- LENZ, S.; BÖHM, K.; OTTNER, R.; HUBER-HUMER, M. (2016) Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy. Waste Management, v. 55, p. 321-329. [CrossRef]
- Alsayed Alsobky, Mostafa Ahmed, Sherien Al Agroudy, Khaled El Araby. A smart framework for municipal solid waste collection management: A case study in Greater Cairo Region. Ain Shams Engineering Journal. Volume 14, Issue 6. 2023. 102183. ISSN 2090-4479. [CrossRef]
- Carneiro, Paulo Fernando Norat. Caracterização e avaliação da potencialidade econômica da coleta seletiva e reciclagem dos resíduos sólidos domiciliares gerados nos municípios de Belém e Ananindeua - PA. 2006. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil (PPGEC), Instituto de Tecnologia (ITEC), Centro Tecnológico, Universidade Federal do Pará, Belém, 2006. Disponível em: http://www.repositorio.ufpa.br:8080/jspui/handle/2011/1899. 8080.
- Frishammar, J., & Parida, V. (2019). Circular Business Model Transformation: A Roadmap for Incumbent Firms. California Management Review, 61(2), 5-29. [CrossRef]
- Muhammad Shahbaz, Tareq Al-Ansari, Abrar Inayat, Muddasser Inayat, Chapter 15 - Technical readiness level of biohydrogen production process and its value chain, Editor(s): Suzana Yusup, Nor Adilla Rashidi,Value-Chain of Biofuels,Elsevier,2022,Pages 335-355,ISBN 9780128243886. [CrossRef]
- Naqvi SR, Tariq R, Shahbaz M, Naqvi M, Aslam M, Khan Z, et al. Recent developments on sewage sludge pyrolysis and its kinetics: resources recovery, thermogravimetric platforms, and innovative prospects. Comput Chem Eng 2021, 150, 107325. [CrossRef]
- A.K. Mostafazadeh, O. Solomatnikova, P. Drogui, R.D. Tyagi. A review of recent research and developments in fast pyrolysis and bio-oil upgrading. Biomass Conversion Biorefinery, 8 (2018), pp. 739-773. [CrossRef]
- S. Papari, K. Hawboldt. A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sustain Energy Rev, 52 (2015), pp. 1580-1595. [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management. Editora Earthscan. USA. (2009). 2009.
- Rezende, E. I. P. Preparação e caracterização química e espectroscópica de “biochar” por pirólise de biomassa em baixa temperatura. 149 f. – Tese - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Química. Curitiba-PR, 2013.
- K. Yadav, S. Jagadevan. Influence of process parameters on synthesis of biochar by pyrolysis of biomass: an alternative source of energy. Recent advances in pyrolysis. IntechOpen (2019).
- Suresh, A., Alagusundaram, A., Kumar, P.S. et al. Microwave pyrolysis of coal, biomass and plastic waste: a review. Environ Chem Lett 19, 3609–3629 (2021). [CrossRef]
- Da Silva, Rodrigo Cândido Passos da; COSTA, Amanda Rodrigues Santos; ELDEIR, Soraya Giovanetti; JUCÁ, José Fernando Thomé. Setorização de rotas de coleta de resíduos sólidos domiciliares por técnicas multivariadas: estudo de caso da cidade do Recife, Brasil. Engenharia Sanitária e Ambiental, v. 25, n. 6, p. 821-832, 2020. [CrossRef]
- D.P. Serrano, J. Aguado, J.M. Escola, E. Garagorri, J.M. Rodrı́guez, L. Morselli, G. Palazzi, R. Orsi, Feedstock recycling of agriculture plastic film wastes by catalytic cracking. Applied Catalysis B: Environmental, Volume 49, Issue 4, 2004, Pages 257-265, ISSN 0926-3373. [CrossRef]
- RIBEIRO, A. M.; MACHADO JÚNIOR, H. F.; COSTA, D. A. MAIA, J. E. P. S., FERREIRA, J. C. N. Craqueamento catalítico de polímeros utilizando catalisadores comerciais de FCC para produção de frações combustíveis. Revista Universidade Rural: Série de Ciências Exatas e da Terra. Seropédica, RJ: EDUR, v.23, n. 1-2, p. 120-128- jan.- dez., 2004.
- Legado da COP-30 para Belém vai transformar a vida da população e beneficiar a cidade. Agência Belém, 2023. Disponível em: Agência Belém (agenciabelem.com.br). Acesso em: 10, novembro de 2023.
- Assunção, F.P.d.C.; Pereira, D.O.; Silva, J.C.C.d.; Ferreira, J.F.H.; Bezerra, K.C.A.; Bernar, L.P.; Ferreira, C.C.; Costa, A.F.d.F.; Pereira, L.M.; Paz, S.P.A.d.; et al. A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical Processes, and Characterization of Bio-Oils and Bio-Adsorbents. Energies 2022, 15, 7971. [Google Scholar] [CrossRef]
- BELÉM. Lei Municipal nº 9.656, de 30 de dezembro de 2020. Institui a Política Municipal de Saneamento Básico do Município de Belém, o Plano Municipal de Saneamento Básico (PMSB), e o Plano de Gestão Integrada de Resíduos Sólidos (PGIRS), em atenção ao disposto no Art. 9º da Lei Federal nº 11.445/2007, com as atualizações trazidas pela Lei nº 14.026/2020, o Novo Marco do Saneamento Básico, e dá outras providências. Belém, PA, 30 dez. 2020.
- Pereira, D.O.; da Costa Assunção, F.P.; da Silva, J.C.C.; Ferreira, J.F.H.; Ferreira, R.B.P.; Lola, Á.L.; do Nascimento, Í.C.P.; Chaves, J.P.; do Nascimento, M.S.C.; da Silva Gouvêa, T.; et al. Prediction of Leachate Characteristics via an Analysis of the Solubilized Extract of the Organic Fraction of Domestic Solid Waste from the Municipality of Belém, PA. Sustainability. 2023, 15, 15456. [Google Scholar] [CrossRef]
- Fesseha, S.N.; Bin, F. The Assessment of Solid Waste Products Management in Ethiopians Municipal Urban Areas. Int. J. Soc. Sci. Manag. 2015, 2, 165–179; [Google Scholar] [CrossRef]
- Julie Élize Guérin, Maxime Charles Paré, Sylvain Lavoie, Nancy Bourgeois. The importance of characterizing residual household waste at the local level: A case study of Saguenay, Quebec (Canada). Waste Management,Volume 77, 2018, Pages 341-349, ISSN 0956-053X. [CrossRef]
- ANBT. NBR 10.004/2004; Resíduos Sólidos—Classificação. Associação Brasileira De Normas Técnicas: Rio de Janeiro, Brasil, 2004.
- Lucia Botti, Daria Battini, Fabio Sgarbossa, Cristina Mora, Door-to-door waste collection: Analysis and recommendations for improving ergonomics in an Italian case study, Waste Management, Volume 109, 2020, Pages 149-160, ISSN 0956-053X. [CrossRef]
- De Castro, D.A.R. Processo de Produção de Bio-Óleo e Bio-Adsorventes via Pirólise das Sementes do Açaí (Euterpe oleraceae, Mart). Ph.D. Thesis, PRODERNA, UFPa, Belém, Brazil, 2019. [Google Scholar]
- Almeida, H.D.S.; Corrêa, O.; Ferreira, C.; Ribeiro, H.; de Castro, D.; Pereira, M.; Mâncio, A.D.A.; Santos, M.; da Mota, S.; Souza, J.D.S.; et al. Diesel-like hydrocarbon fuels by catalytic cracking of fat, oils, and grease (FOG) from grease traps. J. Energy Inst. 2016, 90, 337–354. [Google Scholar] [CrossRef]
- Lesley Santos, Rômulo Angélica, Simone Paz. Investigation of mineral commodity residues based on alkalinity, solubility and other physicochemical aspects aiming the management of amazonian acidic soils. Journal of Environmental Management,Volume 335, 2023, 117558, ISSN 0301-4797. [CrossRef]
- Peng cheng Wang, Lei Qiao, Wei Wang, Jie Yu. Catalytic pyrolysis of waste composite plastics with waste FCC catalyst. Journal of the Energy Institute. Volume 110, 2023, 101338, ISSN 1743-9671. [CrossRef]
- BUAH, W.K.; CUNLIFFE, A.M.; WILLIAMS, P.T. Characterization of products from the pyrolysis of municipal solid waste. Process safety and Environmental Protection 2007, 85, 450–457. [Google Scholar] [CrossRef]
- Jakub Raček, Tomáš Chorazy, Marco Carnevale Miino, Martina Vršanská, Martin Brtnický, Ludmila Mravcová, Jiří Kučerík, Petr Hlavínek. Biochar production from the pyrolysis of food waste: Characterization and implications for its use. Sustainable Chemistry and Pharmacy, Volume 37, 2024, 101387, ISSN 2352-5541. [CrossRef]
- Trazzi, P. A., Higa, A. R., Dieckow, J., Mangrich, A. S., & Higa, R. C. V. (2018). BIOCARVÃO: REALIDADE E POTENCIAL DE USO NO MEIO FLORESTAL. Ciência Florestal, 28(2), 875–887. [CrossRef]
- Cabrera-Penna, M.; Rodríguez-Páez, J. Calcium oxyhydroxide (CaO/Ca(OH)2 ) nanoparticles: Synthesis, characterization and evaluation of their capacity to degrade glyphosate-based herbicides (GBH). Adv. Powder Technol. 2020, 32, 237–25. [Google Scholar] [CrossRef]
- Gopu, C.; Gao, L.; Volpe, M.; Fiori, L.; Goldfarb, J.L. Valorizing municipal solid waste: Waste to energy and activated carbons for water treatment via pyrolysis. J. Anal. Appl. Pyrolysis 2018, 133, 48–58. [Google Scholar] [CrossRef]
- Kumagai, S.; Grause, G.; Kameda, T.; Yoshioka, T. Recovery of benzene-rich oil from the degradation of metal- and metal oxide-containing poly(ethylene terephthalate) composites. J. Mater. Cycles Waste Manag. 2013, 16, 282–290. [Google Scholar] [CrossRef]
- Ghanavati, H.; Nahvi, I.; Karimi, K. Organic fraction of municipal solid waste as a suitable feedstock for the production of lipid by oleaginous yeast Cryptococcus aerius. Waste Manag. 2015, 38, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Hassani, E.; Feyzbar-Khalkhali-Nejad, F.; Rashti, A.; Oh, T.-S. Carbonation, Regeneration, and Cycle Stability of the Mechanically Activated Ca(OH)2 Sorbents for CO2 Capture: An In Situ X ray Diffraction Study. Ind. Eng. Chem. Res. 2020, 59, 11402–11411. [Google Scholar] [CrossRef]
- D. Lefebvre, A. Williams, J. Meersmans, G. Kirk, S. Sohi, P. Goglio, P. Smith. Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Sci. Rep., 10 (2020), p. 19479. [CrossRef]
- Simeng Li, Gang Chen. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Management,Volume 78, 2018, Pages 198-207, ISSN 0956-053X. [CrossRef]
- Jakub Raček, Tomáš Chorazy, Marco Carnevale Miino, Martina Vršanská, Martin Brtnický, Ludmila Mravcová, Jiří Kučerík, Petr Hlavínek. Biochar production from the pyrolysis of food waste: Characterization and implications for its use. Sustainable Chemistry and Pharmacy,Volume 37, 2024, 101387, ISSN 2352-5541. [CrossRef]
- MOTHÉ, C.; AZEVEDO, A. D. Análise térmica de materiais. Rio de Janeiro: Artilber, 2010.
- Ben Hassen Trabelsi A, Zaafouri K, Baghdadi W, Naoui S, Ouerghi A. Second generation biofuels production from waste cooking oil via pyrolysis process. Renew Energy 2018;126:888–96. [CrossRef]
- Aboelela, D.; Saleh, H.; Attia, A.M.; Elhenawy, Y.; Majozi, T.; Bassyouni, M. Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions. Sustainability 2023, 15, 11238. [Google Scholar] [CrossRef]
- Ranjeet Kumar Mishra, Syeda Minnat Chistie, Sneha Ullhas Naika, Kaustubha Mohanty, Catalytic pyrolysis of biomass over zeolites for bio-oil and chemical production: A review on their structure, porosity and acidity co-relation, Bioresource Technology, Volume 366, 2022, 128189, ISSN 0960-8524. [CrossRef]
- Phan, A.N.; Ryu, C.; Sharifi, V.N.; Swithenbank, J. Characterisation of slow pyrolysis products from segregated wastes for energy production. J. Anal. Appl. Pyrolysis 2008, 81, 65–71; [Google Scholar] [CrossRef]
- Bin Yang, Y.; Phan, A.N.; Ryu, C.; Sharifi, V.; Swithenbank, J. Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser. Fuel 2006, 86, 169–180. [Google Scholar] [CrossRef]
- Guimarães, S.F. Craqueamento e hidrocraqueamento catalítico de óleo de soja sobre catalisadores ácidos e básicos para obtenção de biocombustíveis. Ph.D. Thesis, Programa de Pós-graduação em Química, UFBa, Salvador, Brazil, 2019. [Google Scholar]
- Ronghou Liu, Manobendro Sarker, Md. Maksudur Rahman, Chong Li, Meiyun Chai, Nishu, Raphaëlle Cotillon, Norman R. Scott. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review, Progress in Energy and Combustion Science, Volume 80, 2020,100852, ISSN 0360-1285. [CrossRef]
- Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed, Farzad Ismail, Keat Teong Lee, Ghazaleh Amini,Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: A review of recent progress, Energy Conversion and Management, Volume 268, 2022, 115956, ISSN 0196-8904. [CrossRef]
- Ijaz Hussain, Saheed A Ganiyu, Hassan Alasiri, Khalid Alhooshani. A state-of-the-art review on waste plastics-derived aviation fuel: Unveiling the heterogeneous catalytic systems and techno-economy feasibility of catalytic pyrolysis. Energy Conversion and Management,Volume 274, 2022, 116433, ISSN 0196-8904. [CrossRef]
- J.V Gulmine, P.R Janissek, H.M Heise, L Akcelrud, Polyethylene characterization by FTIR, Polymer Testing, Volume 21, Issue 5, 2002, Pages 557-563, ISSN 0142-9418. [CrossRef]
- MORAIS, Ellen Kadja Lima - Co-Pirólise Catalítica de Resíduo de Polietileno e Biomassa De Eucalipto Para Obtenção de Bio-Óleo. Tese de Doutorado, UFRN. Programa de Pós-Graduação em Ciência e Engenharia de Petróleo. Natal –RN, Brasil, 2018.





















| Socio-economic Classification | |
| Classes | Family Income (Minimum/Basic Salary) |
| A | over 20 salaries |
| B | from 10 to 20 salaries |
| C | from 10 to 20 salaries |
| D | from 10 to 20 salaries |
| E | up to 02 salaries |
| Experiments | Feedstock | FCC catalyst mass (%) | Temperature (°C) | Time to Retention (min.) |
| 1 | F.O + Paper +Plastic | 0 | 400 | 1h 30 |
| 2 | F. O+ Paper+ Plastic | 0 | 450 | 1h 30 |
| 3 | F.O.+ Paper+ Plastic | 0 | 475 | 1h 30 |
| 4 | F.O.+ Paper+Plastic | 5 | 450 | 1h 30 |
| 5 | F.O.+ Paper +Plastic | 10 | 450 | 1h 30 |
| 6 | F.O.+ Paper+ Plastic | 15 | 450 | 1h 30 |
| Catalyst | ||||
| Chemical Elements | Biochar, Pyrolysis at 450 °C | Biochar, Catalytic cracking with 10% (wt.) FCC | ||
| Mass [wt.%] |
SD | Mass [wt.%] |
SD | |
| C | 63.1 | 0.1 | 70.6 | 0.1 |
| Ca | 6.8 | 0.0 | 2.1 | 0.0 |
| Cl | 1.5 | 0.0 | 3.5 | 0.0 |
| K | 2.0 | 0.0 | 2.8 | 0.0 |
| O | 22.3 | 0.1 | 17.3 | 0.1 |
| Na | 1.9 | 0.0 | 1.7 | 0.0 |
| Fe | 0.5 | 0.0 | 0.2 | 0.0 |
| Mg | 0.4 | 0.0 | 0.4 | 0.0 |
| Si | 0.5 | 0.0 | 0.9 | 0.0 |
| Al | 0.3 | 0.0 | 0.4 | 0.0 |
| P | 0.5 | 0.0 | - | - |
| Ti | - | - | 0.1 | 0.0 |
| Process parameters | 0.0 (wt.) | ||
| 400 [ºC] | 450 [ºC] | 475 [ºC] | |
| Mass of urban solid wastes (organic matter + paper + plastic) [g] | 50.01 | 50.02 | 50.02 |
| Cracking time [min] | 90 | 100 | 110 |
| Initial cracking temperature [°C] | 327 | 332 | 334 |
| Mechanical system stirring speed [rpm] | 0 | 0 | 0 |
| Mass of solids (coke) [g] | 32.99 | 23.48 | 20.18 |
| Mass of bio-oil [g] | 4.67 | 4.72 | 4.62 |
| Mass of H2O [g] | 9.39 | 10.97 | 11.08 |
| Mass of gas [g] | 5.92 | 10.85 | 14.12 |
| Yield of bio-oil [%] | 9.34 | 9.44 | 9.24 |
| Yield of H2O [%] | 18.78 | 21.93 | 22.15 |
| Yield of solids [%] | 65.97 | 46.94 | 40.34 |
| Yield of gas [%] | 5.92 | 21.69 | 28.27 |
| Process parameters | 450 [°C] | |||
| 0.0 (wt.) |
5.0 (wt.) | 10.0 (wt.) |
15.0 (wt.) |
|
| Mass of urban solid wastes (organic matter + paper + plastic) [g] | 50.02 | 31.52 | 33.02 | 34.51 |
| Mass of FCC [g] | 0.0 | 1.51 | 3.01 | 4.51 |
| Cracking time [min] | 100 | 90 | 90 | 90 |
| Initial cracking temperature [°C] | 332 | 278 | 267 | 265 |
| Mechanical system stirring speed [rpm] | 0 | 0 | 0 | 0 |
| Mass of solids (coke) [g] | 23.48 | 14.43 | 12.55 | 11.01 |
| Mass of bio-oil [g] | 4.72 | 1.15 | 1.45 | 1.15 |
| Mass of H2O [g] | 10.97 | 5.40 | 6.75 | 4.04 |
| Mass of gas [g] | 10.85 | 9.01 | 9.26 | 13.80 |
| Yield of bio-oil [%] | 9.44 | 3.83 | 4.83 | 3.83 |
| Yield of H2O [%] | 21.93 | 17.99 | 22.49 | 13.47 |
| Yield of solids [%] | 46.94 | 48.08 | 41.82 | 36.70 |
| Yield of gas [%] | 21.69 | 30.01 | 30.86 | 54.00 |
| Physicochemical Property | Temperature | ||
|---|---|---|---|
| Acid Index | 400 °C | 450 °C | 475 °C |
| I.ABio-Oil [mg KOH/g] | 61.86 | 73.71 | 96.08 |
| I.AAqueous Phase [mg KOH/g] | 74.83 | 56.96 | 45.25 |
| Physicochemical Property | 450 °C | ||
| FCC | |||
| Acid Index | 5.0% (wt.) | 10.0% (wt.) | 15.0% (wt.) |
| I.ABio-Oil [mg KOH/g] | 75.60 | 86.90 | 81.25 |
| I.AAqueous Phase [mg KOH/g] | 55.83 | 64.31 | 72.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
