Submitted:
20 August 2024
Posted:
21 August 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction




Conclusion
Author Contributions
Funding
Data and Materials Availability Statement
Acknowledgments
Conflicts of Interest
Ethical approval
Code availability
References
- Akoto, O., Azuure, A. A., & Adotey, K. D. (2016). Pesticide residues in water, sediment and fish from Tono Reservoir and their health risk implications. SpringerPlus, 5(1),1-11. [CrossRef]
- Antwi, F. B., & Reddy, G. V. (2015). Toxicological effects of pyrethroids on non-target aquatic insects. Environmental toxicology and pharmacology, 40(3), 915-923. [CrossRef]
- Arcand-Hoy, L. D., & Benson, W. H. (1998). Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environmental Toxicology and Chemistry: An International Journal, 17(1), 49-57. [CrossRef]
- Assis, C. R. D., Bezerra, R. S., & Carvalho Jr, L. B. (2011). Fish cholinesterases as biomarkers of organophosphorus and carbamate pesticides. Pesticides in the modern world-pests control and pesticides exposure and toxicity assessment, 13, 253-278. ISBN 978-953-307-457-3. [CrossRef]
- AYDINALP, C., & PORCA, M. M. (2004). The effects of pesticides in water resources. Journal of Central European Agriculture, 5(1), 5-12. https://hrcak.srce.hr/16556.
- Bashir, F., & Jan, S. (2015). Oxidative stress and antioxidant defence systems in response to pesticide stress. Legumes under Environmental Stress: Yield, Improvement and Adaptations, 103-124. [CrossRef]
- Baweja, P., Kumar, S., & Kumar, G. (2020). Fertilizers and pesticides: Their impact on soil health and environment. Soil health, 265-285. [CrossRef]
- Belluco, S., Bertola, M., Montarsi, F., Di Martino, G., Granato, A., Stella, R., ...&Mutinelli, F. (2023). Insects and Public Health: An Overview. Insects, 14(3), 240. [CrossRef]
- Bjørling-Poulsen, M., Andersen, H. R., &Grandjean, P. (2008). Potential developmental neurotoxicity of pesticides used in Europe. Environmental Health, 7, 1-22. [CrossRef]
- Boryslawskyj, M., Garrood, A. C., Pearson, J. T., & Woodhead, D. (1988). Elevation of glutathione-S-transferase activity as a stress response to organochlorine compounds, in the freshwater mussel, Sphaerium corneum. Marine environmental research, 24(1-4), 101-104. [CrossRef]
- Brzeziński, J., & Ludwicki, K. (1973). The interrelationship of the changes of acetylcholine esterase and catecholamines blood and urine levels in rats poisoned with disyston. Polish journal of pharmacology and pharmacy, 25(3), 313-316. PMID: 4781488.
- Bus, J. S. (1983). Oxygen activation and lipoperoxidative mechanisms of toxicity of pesticides and other xenobiotics. In Mode of Action, Metabolism and Toxicology (pp. 457-462). Pergamon. [CrossRef]
- Casida, J. E. (1963). Mode of action of carbamates. Annual review of entomology, 8(1), 39-58. [CrossRef]
- Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G., Chen, W. J., & Chen, S. (2023). Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. Journal of Environmental Chemical Engineering, 109591. [CrossRef]
- Clark, A. G., & Shamaan, N. A. (1984). Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pesticide Biochemistry and Physiology, 22(3), 249-261. [CrossRef]
- Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Current neuropharmacology, 11(3), 315-335. Current Neuropharmacology, Volume 11, Number 3. [CrossRef]
- Comporti, M. (1987). Glutathione depleting agents and lipid peroxidation. Chemistry and physics of lipids, 45(2-4), 143-169. [CrossRef]
- Costa, L. G. (2008). Toxic effects of pesticides. Casarett and Doull’s toxicology: the basic science of poisons, 8, 883-930.
- DeLorenzo, M. E., Scott, G. I., & Ross, P. E. (2001). Toxicity of pesticides to aquatic microorganisms: a review. Environmental Toxicology and Chemistry: An International Journal, 20(1), 84-98. [CrossRef]
- de Perre, C., Trimble, A. J., Maul, J. D., & Lydy, M. J. (2014). Ecological bioavailability of permethrin and p, p′-DDT: toxicity depends on type of organic matter resource. Chemosphere, 96, 67-73. [CrossRef]
- Dos Santos, M. S., Antunes Filho, S., &Backx, B. P. (2023). Bionanotechnology in Agriculture: A One Health Approach. Life, 13(2), 509. [CrossRef]
- Elia, A. C., Waller, W. T., & Norton, S. J. (2002). Biochemical responses of bluegill sunfish (Lepomis macrochirus, Rafinesque) to atrazine induced oxidative stress. Bulletin of environmental contamination and toxicology, 68, 809-816. [CrossRef]
- Farcy, E., Burgeot, T., Haberkorn, H., Auffret, M., Lagadic, L., Allenou, J. P., ... & Caquet, T. (2013). An integrated environmental approach to investigate biomarker fluctuations in the blue mussel Mytilus edulis L. in the Vilaine estuary, France. Environmental Science and Pollution Research, 20, 630-650. [CrossRef]
- Faust, M., Altenburger, R., Boedeker, W., & Grimme, L. H. (1993). Additive effects of herbicide combinations on aquatic non-target organisms. Science of the total environment, 134, 941-952. [CrossRef]
- Figueiredo-Fernandes, A., Fontaínhas-Fernandes, A., Peixoto, F., Rocha, E., & Reis-Henriques, M. A. (2006). Effects of gender and temperature on oxidative stress enzymes in Nile tilapia Oreochromis niloticus exposed to paraquat. Pesticide biochemistry and physiology, 85(2), 97-103. [CrossRef]
- Franco, R., Sánchez-Olea, R., Reyes-Reyes, E. M., & Panayiotidis, M. I. (2009). Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674(1-2), 3-22. [CrossRef]
- Freitas, J., Cano, P., Craig-Veit, C., Goodson, M. L., Furlow, J. D., & Murk, A. J. (2011). Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicology in Vitro, 25(1), 257-266. [CrossRef]
- Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry: An International Journal, 20(1), 37-45. [CrossRef]
- Gebicki, S., & Gebicki, J. M. (1993). Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochemical Journal, 289(3), 743-749. [CrossRef]
- Gilbert, L. I. (Ed.). (2011). Insect molecular biology and biochemistry. Academic Press. ISBN: 0123847478, 9780123847478.
- Goh, P. S., Lau, W. J., Ismail, A. F., Samawati, Z., Liang, Y. Y., & Kanakaraju, D. (2022). Microalgae-enabled wastewater treatment: A sustainable strategy for bioremediation of pesticides. Water, 15(1), 70. [CrossRef]
- Hassold, E., & Backhaus, T. (2009). Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna: A comparative assessment. Environmental Toxicology and Chemistry: An International Journal, 28(6), 1218-1226. [CrossRef]
- Hajjar, M. J., Ahmed, N., Alhudaib, K. A., & Ullah, H. (2023). Integrated Insect Pest Management Techniques for Rice. Sustainability, 15(5), 4499. [CrossRef]
- Hayes, T., Haston, K., Tsui, M., Hoang, A., Haeffele, C., & Vonk, A. (2003). Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environmental health perspectives, 111(4), 568-575. [CrossRef]
- Hoy, J. (2023). Gathering Strays: Stories from Kansas and the Southwestern Plains. University Press of Kansas. ISBN: 070063410X, 9780700634101.
- Jeon, H. J., Park, J., & Lee, S. E. (2023). Developmental toxicity of chlorpyrifos-methyl and its primary metabolite, 3, 5, 6-trichloro-2-pyridinol to early life stages of zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 249, 114352. [CrossRef]
- Kadiru, S., Patil, S., & D’Souza, R. (2022). Effect of pesticide toxicity in aquatic environments: A recent review. Int. J. Fish Aquat. Stud, 10(3), 113-118. [CrossRef]
- Kamel, F., & Hoppin, J. A. (2004). Association of pesticide exposure with neurologic dysfunction and disease. Environmental health perspectives, 112(9), 950-958. [CrossRef]
- Katagi, T., & Tanaka, H. (2016). Metabolism, bioaccumulation, and toxicity of pesticides in aquatic insect larvae. Journal of pesticide science, 41(2), 25-37. [CrossRef]
- Koundinya, P. R., & Ramamurthi, R. (1979). Effect of organophosphate pesticide Sumithion (Fenitrothion) on some aspects of carbohydrate metabolism in a freshwater fish, Sarotherodon (Tilapia) mossambicus (Peters). Experientia, 35, 1632-1633. [CrossRef]
- Krithiga, T., Sathish, S., Renita, A. A., Prabu, D., Lokesh, S., Geetha, R., ... & Sillanpaa, M. (2022). Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Science of The Total Environment, 831, 154808. [CrossRef]
- Leroux, P. (1996). Recent developments in the mode of action of fungicides. Pesticide Science, 47(2), 191-197. [CrossRef]
- Nahar, K., Baillie, J., & Zulkarnain, N. A. (2023). Herbicide Fate and Transport in the Great Barrier Reef: A Review of Critical Parameters. Water, 15(2), 237. [CrossRef]
- O'Brien, R. D. (2014). Insecticides: action and metabolism. ISBN: 1483270688, 9781483270685.
- Ochoa-Acuña, H. G., Bialkowski, W., Yale, G., & Hahn, L. (2009). Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna. Ecotoxicology, 18, 440-446. [CrossRef]
- Oropesa, A. L., García-Cambero, J. P., & Soler, F. (2009). Glutathione and malondialdehyde levels in common carp after exposure to simazine. Environmental toxicology and pharmacology, 27(1), 30-38. [CrossRef]
- Phillips, T. A., Wu, J., Summerfelt, R. C., & Atchison, G. J. (2002) Acute toxicity and cholinesterase inhibition in larval and early juvenile walleye exposed to chlorpyrifos. Environmental Toxicology and Chemistry: An International Journal, 21(7), 1469-1474. [CrossRef]
- Peña-Llopis, S., Ferrando, D., & Peña, J. B. (2003). Increased recovery of brain acetylcholinesterase activity in dichlorvos-intoxicated European eels Anguilla anguilla by bath treatment with N-acetylcysteine. Diseases of aquatic organisms, 55(3), 237-245. [CrossRef]
- Lee SS, Fang SC, Freed VH. 1976. Effect of DDT on photosynthesis of Selenastrum capricornutum. Pestic Biochem Physiol 6:46–51. [CrossRef]
- Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic toxicology, 101(1), 13-30. [CrossRef]
- Matsumura, F. (2012). Toxicology of insecticides. Springer Science & Business Media. ISBN: 1461344107, 9781461344100.
- Navarro, S., Vela, N., & Navarro, G. (2007). An overview on the environmental behaviour of pesticide residues in soils. Spanish journal of agricultural research, 5(3), 357-375. [CrossRef]
- Parra-Arroyo, L., González-González, R. B., Castillo-Zacarías, C., Martínez, E. M. M., Sosa-Hernández, J. E., Bilal, M., ... & Parra-Saldívar, R. (2022). Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. Science of The Total Environment, 807, 151879. [CrossRef]
- Phyu, Y. L., Palmer, C. G., Warne, M. S. J., Dowse, R., Mueller, S., Chapman, J., ... & Lim, R. P. (2013). Assessing the chronic toxicity of atrazine, permethrin, and chlorothalonil to the cladoceran Ceriodaphnia cf. dubia in laboratory and natural river water. Archives of environmental contamination and toxicology, 64, 419-426. [CrossRef]
- Rajak, P., Roy, S., Ganguly, A., Mandi, M., Dutta, A., Das, K., ... & Biswas, G. (2023). Agricultural pesticides–friends or foes to biosphere?. Journal of Hazardous Materials Advances, 10, 100264. [CrossRef]
- Ravula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. Critical Reviews in Toxicology, 51(2), 117-140. [CrossRef]
- Regoli, F., & Giuliani, M. E. (2014). Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Marine environmental research, 93, 106-117. [CrossRef]
- Richmond, R., & Halliwell, B. (1982). Formation of hydroxyl radicals from the paraquat radical cation, demonstrated by a highly specific gas chromatographic technique. The role of superoxide radical anion, hydrogen peroxide, and glutathione reductase. Journal of inorganic biochemistry, 17(2), 95-107. [CrossRef]
- Sastry, K. V., & Siddiqui, A. A. (1982). Chronic toxic effects of the carbamate pesticide sevin on carbohydrate metabolism in a freshwater snakehead fish, Channa punctatus. Toxicology letters, 14(1-2), 123-130. [CrossRef]
- Shelley, L. K., Balfry, S. K., Ross, P. S., & Kennedy, C. J. (2009). Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 92(2), 95-103. [CrossRef]
- Shenoy, K., Cunningham, B. T., Enfroe, J. W., & Crowley, P. H. (2009). Growth and survival of northern leopard frog (Rana pipiens) tadpoles exposed to two common pesticides. Environmental Toxicology and Chemistry: An International Journal, 28(7), 1469-1474. [CrossRef]
- Spehar, R. L., Tanner, D. K., & Nordling, B. R. (1983). Toxicity of the synthetic pyrethroids, permethrin and AC 222705 racemic (cyano (3-phenoxyphenyl) methyl-racemic-4-(difluoromethoxy)-alpha-(1-methylethyl) benzene acetate) and their accumulation in early life stages of fathead minnows (Pimephales promelas) and snails (Helisoma trivolvis). Aquatic Toxicology, 3, 171-182. [CrossRef]
- Slotkin, T. A. (2004). Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicology and applied pharmacology, 198(2), 132-151. [CrossRef]
- Stephensen, E., Svavarsson, J., Sturve, J., Ericson, G., Adolfsson-Erici, M., & Förlin, L. (2000). Biochemical indicators of pollution exposure in shorthorn sculpin (Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland. Aquatic Toxicology, 48(4), 431-442. [CrossRef]
- Silveyra, G. R., Silveyra, P., Vatnick, I., Medesani, D. A., & Rodríguez, E. M. (2018). Effects of atrazine on vitellogenesis, steroid levels and lipid peroxidation, in female red swamp crayfish Procambarus clarkii. Aquatic Toxicology, 197, 136-142. [CrossRef]
- Tavera-Mendoza, L., Ruby, S., Brousseau, P., Fournier, M., Cyr, D., & Marcogliese, D. (2002). Response of the amphibian tadpole (Xenopus laevis) to atrazine during sexual differentiation of the testis. Environmental Toxicology and Chemistry: An International Journal, 21(3), 527-531. [CrossRef]
- Thompson, H. M. (1999). Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology, 8, 369-384. [CrossRef]
- Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and environmental safety, 64(2), 178-189. [CrossRef]
- Vijayavel, K., Gomathi, R. D., Durgabhavani, K., & Balasubramanian, M. P. (2004). Sublethal effect of naphthalene on lipid peroxidation and antioxidant status in the edible marine crab Scylla serrata. Marine Pollution Bulletin, 48(5-6), 429-433. [CrossRef]
- Weber, J., Halsall, C. J., Muir, D., Teixeira, C., Small, J., Solomon, K., ... & Bidleman, T. (2010). Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment, 408(15), 2966-2984. [CrossRef]
- Wanner, J., Srb, M., & Beneš, O. (2023). Water reuse in the frame of circular economy. In Current Developments in Biotechnology and Bioengineering (pp. 221-266). Elsevier. [CrossRef]
- Yokoyama, T. (1988). Sensitivity of Japanese eel. Anguilla japonica, to 68 kinds of agricultural chemicals. Bull Agric Chem Insp Stn (Tokyo), 28, 26-33. CRID: 1572543026261929600.
- Younis, H. M., Abo-El-Saad, M. M., Abdel-Razik, R. K., & Abo-Seda, S. A. (2002). Resolving the DDT target protein in insects as a subunit of the ATP synthase. Biotechnology and applied biochemistry, 35(1), 9-17. [CrossRef]
- Zheng, L., Zhang, Y., Yan, Z., Zhang, J., Li, L., Zhu, Y., ... & Liu, Z. (2017). Derivation of predicted no-effect concentration and ecological risk for atrazine better based on reproductive fitness. Ecotoxicology and environmental safety, 142, 464-470. [CrossRef]



| Time period | Type of pesticide use |
| Ancient time | Ashes, blisters, and common salts |
| 1st century to 15th century | Arsenic, a suggestion of soda and olive oil for the treatment of legumes (Pliny the Elder, a Roman naturalist-Historia Naturalis) |
| 16th century to the middle of the 18th century | Arsenicals and nicotine in the form of tobacco extracts (Chinese farmers) |
| 1850-1866 | Pyrethrum, soap, and a wash of tobacco, sulfur, and lime are also used |
| 1867-1895 | The pigment Paris green (an impure form of copper arsenite), Paris green, and kerosene oil emulsion |
| 1896-1899 | Bordeaux mixture (CuSO4 and Ca (OH)2) and selective chemical herbicides |
| 1900-1960 | Dilute sulfuric acid, copper nitrates, and potassium salts Sodium arsenite solutions become the standard herbicides and are used in large quantities. Organomercury seed dressing. Dithiocarbamates fungicides used in the US. Insecticidal potential of DDT discovered in Switzerland. Chlorinated hydrocarbons (DDT, BHC, dieldrin, aldrin, and chlordane). Fungicides captan, glycogen, and organophosphorus insecticide: malathion |
| 1961 | DDT is registered for use on 34 different crops as pesticide usage dramatically increases |
| 1962-1971 | Stoppage of DDT usage and other chlorinated compounds by farmers. Favor of the use of Organophosphates and Carbamates |
| 1972 | Environmental Protection Agency revoked the use of DDT on all food sources in the United States. The World Health Organization, however, still reserves the right to use DDT on particularly virulent outbreaks of malaria. |
| 1973-1989 | Herbicidal sulfonylureas, neonicotinoids, glyphosate, synthetic fungicides such as metaxyl and triadimefron, and light-stable pyrethroid pesticides are introduced |
| 1990-1999 | Integrated pest management, intensified research on biological pest control methods and other alternatives to pesticides |
| 2000-2009 | Widespread usage of IPM techniques in organic farming excluding the usage of synthetic pesticides. |
| 2010-2015 | Involvement of genetic engineering and biotechnological methods to control the usage of pesticides eg. Baculoviruses |
| 2016-2022 | Acetamiprid, Allethrin, Bendiocarb, Bifenthrin, Carbaryl, Cyphenothrin, Difenconazole, D-trans Allethrin, Fipronil, Imidachloprid, Limda-cyahalothrin, Profenofos, Thiamethoxam, Dodine, Hexaconazole, Propineb, Thiophanate-Methyle, Tricyclazole, Metribuzin, Oxyfluorfen, Bromadiolone, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
