Submitted:
24 February 2025
Posted:
24 February 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Preoperative Assessment
2.4. Surgical Instruments
2.5. Surgical Technique
2.6. Data Collection and Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Changes in CECD
3.3. Changes in CCT, CV, and PHC
3.4. Changes in IOP
3.5. Changes in BCVA over time
3.6. Complications
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IOP | Intraocular pressure |
| CECD | Corneal endothelial cell density |
| CCT | Central corneal thickness |
| CV | Coefficient of variation |
| PHC | Percentage of hexagonal cells |
| IOL | Intraocular lens |
| BCVA | Best-corrected visual acuity |
| CDE | Cumulative dissipated energy |
| SD | Standard deviation |
| POAG | Primary open angle glaucoma |
References
- Srinivasan, S.; Raman, R.; Swaminathan, G.; Ganesan, S.; Kulothungan, V.; Sharma, T. Incidence, progression, and risk factors for cataract in type 2 diabetes. Invest Ophthalmol Vis Sci 2017, 58, 5921–5929. [CrossRef]
- Haddad, N.M.; Sun, J.K.; Abujaber, S.; Schlossman, D.K.; Silva, P.S. Cataract surgery and its complications in diabetic patients. Semin Ophthalmol 2014, 29, 329–337. [CrossRef]
- Kingsbury, K.D.; Skeie, J.M.; Cosert, K.; Schmidt, G.A.; Aldrich, B.T.; Sales, C.S.; Weller, J.; Kruse, F.; Thomasy, S.M.; Schlötzer-Schrehardt, U.; Greiner, M.A. Type II diabetes mellitus causes extracellular matrix alterations in the posterior cornea that increase graft thickness and rigidity. Invest Ophthalmol Vis Sci 2023, 64, 26. [CrossRef]
- Herse, P.R. Corneal hydration control in normal and alloxan-induced diabetic rabbits. Invest Ophthalmol Vis Sci 1990, 31, 2205–2213.
- Dielemans, I.; de Jong, P.T.; Stolk, R.; Vingerling, J.R.; Grobbee, D.E.; Hofman, A. Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population. The Rotterdam Study. Ophthalmology 1996, 103, 1271–1275. [CrossRef]
- Hymowitz, M.B.; Chang, D.; Feinberg, E.B.; Roy, S. Increased intraocular pressure and hyperglycemic level in diabetic patients. PLoS One 2016, 11, e0151833. [CrossRef]
- Miyata, K.; Nagamoto, T.; Maruoka, S.; Tanabe, T.; Nakahara, M.; Amano, S. Efficacy and safety of the soft-shell technique in cases with a hard lens nucleus. J Cataract Refract Surg 2002, 28, 1546–1550. [CrossRef]
- Park, J.; Yum, H.R.; Kim, M.S.; Harrison, A.R.; Kim, E.C. Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. J Cataract Refract Surg 2013, 39, 1463–1469. [CrossRef]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: a prospective randomized clinical trial. Am J Ophthalmol 2019, 207, 10–17. [CrossRef]
- Vasavada, A.; Singh, R. Phacoemulsification in eyes with a small pupil. J Cataract Refract Surg 2000, 26, 1210–1218. [CrossRef]
- Hugod, M.; Storr-Paulsen, A.; Norregaard, J.C.; Nicolini, J.; Larsen, A.B.; Thulesen, J. Corneal endothelial cell changes associated with cataract surgery in patients with type 2 diabetes mellitus. Cornea 2011, 30, 749–753. [CrossRef]
- Misra, S.L.; Goh, Y.W.; Patel, D.V.; Riley, A.F.; McGhee, C.N. Corneal microstructural changes in nerve fiber, endothelial and epithelial density after cataract surgery in patients with diabetes mellitus. Cornea 2015, 34, 177–181. [CrossRef]
- Dewan, T.; Malik, P.K.; Kumari, R. Comparison of effective phacoemulsification time and corneal endothelial cell loss using 2 ultrasound frequencies. J Cataract Refract Surg 2019, 45, 1285–1293. [CrossRef]
- Fernández-Muñoz, E.; Zamora-Ortiz, R.; Gonzalez-Salinas, R. Endothelial cell density changes in diabetic and nondiabetic eyes undergoing phacoemulsification employing phaco-chop technique. Int Ophthalmol 2019, 39, 1735–1741. [CrossRef]
- Cruz, J.C.G.; Moreno, C.B.; Soares, P.; Moscovici, B.K.; Colombo-Barboza, G.N.; Colombo-Barboza, L.R.; Colombo-Barboza, M.N. Comparison of endothelial cell loss in diabetic patients after conventional phacoemulsification and femtosecond laser-assisted cataract surgery. BMC Ophthalmol 2023, 23, 181. [CrossRef]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 479–484. [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J Clin Med 2024, 13, 7298. [CrossRef]
- Emery, J.M.; Little, J.H. Patient selection. In: Phacoemulsification and aspiration of cataracts; Surgical Techniques, Complications, and Results; Emery, J.M., Little, J.H., Eds.; CV Mosby: St Louis, MO, USA, 1979; pp. 45–48.
- Wong, T.; Hingorani, M.; Lee, V. Phacoemulsification time and power requirements in phaco chop and divide and conquer nucleofractis techniques. J Cataract Refract Surg 2000, 26, 1374–1378. [CrossRef]
- Helvacioglu, F.; Yeter, C.; Sencan, S.; Tunc, Z.; Uyar, O.M. Comparison of two different ultrasound methods of phacoemulsification. Am J Ophthalmol 2014, 158, 221–226. [CrossRef]
- Helvacioglu, F.; Yeter, C.; Tunc, Z.; Sencan, S. Outcomes of torsional microcoaxial phacoemulsification performed by 12-degree and 22-degree bent tips. J Cataract Refract Surg 2013, 39, 1219–1225. [CrossRef]
- Tang, Y.; Chen, X.; Zhang, X.; Tang, Q.; Liu, S.; Yao, K. Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients, a systematic review and meta-analysis. Sci Rep 2017, 7, 14128. [CrossRef]
- Zhang, K.; Zhao, L.; Zhu, C.; Nan, W.; Ding, X.; Dong, Y.; Zhao, M. The effect of diabetes on corneal endothelium: a meta-analysis. BMC Ophthalmol 2021, 21, 78. [CrossRef]
- Yang, Y.; Chai, H.; Ding, Z.; Tang, C.; Liang, Y.; Li, Y.; Liang, H. Meta-analysis of corneal endothelial changes after phacoemulsification in diabetic and non-diabetic patients. BMC Ophthalmol 2023, 23, 174. [CrossRef]
- Aldrich, B.T.; Schlötzer-Schrehardt, U.; Skeie, J.M.; Burckart, K.A.; Schmidt, G.A.; Reed, C.R.; Zimmerman, M.B.; Kruse, F.E.; Greiner, M.A. Mitochondrial and morphologic alterations in native human corneal endothelial cells associated with diabetes mellitus. Invest Ophthalmol Vis Sci 2017, 58, 2130–2138. [CrossRef]
- Joo, J.H.; Kim, T.G. Comparison of corneal endothelial cell changes after phacoemulsification between type 2 diabetic and nondiabetic patients. Medicine (Baltimore) 2021, 100, e27141. [CrossRef]
- Khalid, M.; Ameen, S.S.; Ayub, N.; Mehboob, M.A. Effects of anterior chamber depth and axial length on corneal endothelial cell density after phacoemulsification. Pak J Med Sci 2019, 35, 200–204. [CrossRef]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: a randomized study. Indian J Ophthalmol 2022, 70, 794–798. [CrossRef]
- Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Continued endothelial cell loss ten years after lens implantation. Ophthalmology 1994, 101, 1014–1022. [CrossRef]
- Morikubo, S.; Takamura, Y.; Kubo, E.; Tsuzuki, S.; Akagi, Y. Corneal changes after small-incision cataract surgery in patients with diabetes mellitus. Arch Ophthalmol 2004, 122, 966–969. [CrossRef]
- Wirbelauer, C.; Anders, N.; Pham, D.T.; Wollensak, J.; Laqua, H. Intraocular pressure in nonglaucomatous eyes with pseudoexfoliation syndrome after cataract surgery. Ophthalmic Surg Lasers 1998, 29, 466–471. [CrossRef]
- Shingleton, B.J.; Gamell, L.S.; O'Donoghue, M.W.; Baylus, S.L.; King, R. Long-term changes in intraocular pressure after clear corneal phacoemulsification: normal patients versus glaucoma suspect and glaucoma patients. J Cataract Refract Surg 1999, 25, 885–890. [CrossRef]
- Irak-Dersu, I.; Nilson, C.; Zabriskie, N.; Durcan, J.; Spencer, H.J.; Crandall, A. Intraocular pressure change after temporal clear corneal phacoemulsification in normal eyes. Acta Ophthalmol 2010, 88, 131–134. [CrossRef]
- Shingleton, B.J.; Pasternack, J.J.; Hung, J.W.; O'Donoghue, M.W. Three and five year changes in intraocular pressures after clear corneal phacoemulsification in open angle glaucoma patients, glaucoma suspects, and normal patients. J Glaucoma 2006, 15, 494–498. [CrossRef]
- Poley, B.J.; Lindstrom, R.L.; Samuelson, T.W. Long-term effects of phacoemulsification with intraocular lens implantation in normotensive and ocular hypertensive eyes. J Cataract Refract Surg 2008, 34, 735–742. [CrossRef]
- Poley, B.J.; Lindstrom, R.L.; Samuelson, T.W.; Schulze, R., Jr. Intraocular pressure reduction after phacoemulsification with intraocular lens implantation in glaucomatous and nonglaucomatous eyes: evaluation of a causal relationship between the natural lens and open-angle glaucoma. J Cataract Refract Surg 2009, 35, 1946–1955. [CrossRef]
- Kuehn, M.H.; Vranka, J.A.; Wadkins, D.; Jackson, T.; Cheng, L.; Ledolter, J. Circumferential trabecular meshwork cell density in the human eye. Exp Eye Res 2021, 205, 108494. [CrossRef]
- Akahoshi, T. Phaco prechop: Manual nucleofracure prior to phacoemulsification. Operative Tech Cataract Refract Surge 1998, 1, 69–91.
- Sato, T. Reply: Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 1078–1079. [CrossRef]
| Characteristics/Parameters | Diabetes group | Control group | p-Value |
|---|---|---|---|
| Number of eyes | 94 | 87 | |
| Age (years) | 74.6 ± 6.8 | 74.3 ± 5.5 | 0.71a |
| Sex Male | 43 (46%) | 30 (34%) | 0.12b |
| Female | 51 (54%) | 57 (66%) | |
| Operative time (min) | 4.63 ± 1.24 | 4.91 ± 1.38 | 0.14a |
| Phaco time (s) | 15.5 ± 6.0 | 14.2 ±6.3 | 0.15a |
| Aspiration time (s) | 68.1 ± 16.7 | 67.6 ± 20.4 | 0.83a |
| CDE | 6.45 ± 2.30 | 5.91 ± 2.61 | 0.14a |
| Volume of fluid used (mL) | 27.0 ± 7.7 | 26.5 ± 8.1 | 0.65a |
| . | Mean CECD ± SD (% Decrease) | ||||
| Time period |
Diabetes group (n = 94) |
Control group (n = 87) |
p-Value | ||
| Preoperatively | 2670 ± 294 | - | 2652 ± 211 | - | 0.61 b |
| 7 weeks postoperatively | 2533 ± 272 a | 5.1 | 2576 ± 207 a | 2.8 | 0.24 b |
| 19 weeks postoperatively | 2570 ± 294 a | 3.9 | 2583 ± 221 a | 2.6 | 0.73 b |
| 1 year postoperatively | 2620 ± 306 a | 2.1 | 2620 ± 214 a | 1.2 | 0.99 b |
| Time period | Diabetes group (n = 94) |
Control group (n = 87) |
p-Value |
|---|---|---|---|
| CCT | Mean ± SD | ||
| Preoperatively | 538 ± 34.0 | 536 ± 34.1 | 0.59 a |
| 7 weeks postoperatively | 547 ± 36.2 c | 537 ± 34.0 d | 0.09 a |
| 19 weeks postoperatively | 542 ± 33.3 c | 536 ± 32.7 d | 0.26 a |
| 1 year postoperatively | 537 ± 35.0 d | 531 ± 33.6 c | 0.24 a |
| CV | Mean ± SD | ||
| Preoperatively | 42.3 ± 5.5 | 39.8 ± 6.9 | < 0.01 b |
| 7 weeks postoperatively | 41.3 ± 5.6 d | 39.1 ± 5.2 d | < 0.01 b |
| 19 weeks postoperatively | 39.3 ± 6.0 c | 36.4 ± 4.9 c | < 0.01 b |
| 1 year postoperatively | 37.6 ± 5.0 c | 35.7 ± 4.9 c | 0.01 b |
| PHC | Mean ± SD | ||
| Preoperatively | 39.7 ± 6.9 | 44.7 ± 5.6 | < 0.01 b |
| 7 weeks postoperatively | 41.0 ± 6.5 d | 45.5 ± 6.7 d | < 0.01 b |
| 19 weeks postoperatively | 44.5 ± 7.1 c | 48.1 ± 6.2 c | < 0.01 b |
| 1 year postoperatively | 46.4 ± 6.7 c | 48.8 ± 7.0 c | 0.02 b |
| Mean IOP ± SD (% Decrease) | |||||
|---|---|---|---|---|---|
| Time period | Diabetes group (n = 94) | Control group (n = 87) | p-Value | ||
| Preoperatively | 14.0 ± 1.9 | - | 14.5 ± 2.0 | - | .06 a |
| 7 weeks postoperatively | 11.9 ± 2.3 b | 13.2 | 12.1 ± 1.8 b | 16.1 | .49 a |
| 19 weeks postoperatively | 12.3 ± 2.2 b | 10.7 | 12.6 ± 1.8 b | 12.4 | .20 a |
| 1 year postoperatively | 12.6 ± 2.1 b | 8.0 | 12.9 ± 1.9 b | 11.2 | .36 a |
| Best-corrected visual acuity | |||
|---|---|---|---|
| Time period | Diabetes group (n = 94) |
Control group (n = 87) |
p-Value |
| Preoperatively | 0.031 ± 0.030 -0.040 ± 0.0049 c -0.037 ± 0.0038 c -0.039 ± 0.0042 c |
0.074 ± 0.011 -0.065 ± 0.00095 c -0.0664 ± 0.00086 c -0.064 ± 0.0010 c |
0.02 a |
| 7 weeks postoperatively | < 0.01 b | ||
| 19 weeks postoperatively | < 0.01 b | ||
| 1 year postoperatively | < 0.01 b | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
