81,574 preprints found

Match Type

Sort by

Article
Pharmacy
Medicine and Pharmacology

Martin Scholz,

Roland Derwand,

Vladimir Zelenko

Abstract: Objective: To describe outcomes of patients with coronavirus disease 2019 (COVID-19) in the outpatient setting after early treatment with zinc, low dose hydroxychloroquine, and azithromycin (the triple therapy) dependent on risk stratification. Design: Retrospective case series study. Setting: General practice. Participants: 141 COVID-19 patients with laboratory confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the year 2020. Main Outcome Measures: Risk-stratified treatment decision, rate of hospitalization and all-cause death. Results: Of 335 positively PCR-tested COVID-19 patients, 127 were treated with the triple therapy. 104 of 127 met the defined risk stratification criteria and were included in the analysis. In addition, 37 treated and eligible patients who were confirmed by IgG tests were included in the treatment group (total N=141). 208 of the 335 patients did not meet the risk stratification criteria and were not treated. After 4 days (median, IQR 3-6, available for N=66/141) of onset of symptoms, 141 patients (median age 58 years, IQR 40-67; 73% male) got a prescription for the triple therapy for 5 days. Independent public reference data from 377 confirmed COVID-19 patients of the same community were used as untreated control. 4 of 141 treated patients (2.8%) were hospitalized, which was significantly less (p<0.001) compared with 58 of 377 untreated patients (15.4%) (odds ratio 0.16, 95% CI 0.06-0.5). Therefore, the odds of hospitalization of treated patients were 84% less than in the untreated group. One patient (0.7%) died in the treatment group versus 13 patients (3.5%) in the untreated group (odds ratio 0.2, 95% CI 0.03-1.5; p=0.16). There were no cardiac side effects. Conclusions: Risk stratification-based treatment of COVID-19 outpatients as early as possible after symptom onset with the used triple therapy, including the combination of zinc with low dose hydroxychloroquine, was associated with significantly less hospitalizations and 5 times less all-cause deaths.
Article
Biochemistry and Molecular Biology
Biology and Life Sciences

Bo Wang,

Anna Kovalchuk,

Dongping Li,

Yaroslav Ilnytskyy,

Igor Kovalchuk,

Olga Kovalchuk

Abstract: With the rapidly growing pandemic of COVID-19 caused by the new and challenging to treat zoonotic SARS-CoV2 coronavirus, there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality. Inhibition of viral entry and thereby spread constitute plausible therapeutic avenues. Similar to other respiratory pathogens, SARS-CoV2 is transmitted through respiratory droplets, with potential for aerosol and contact spread. It uses receptor-mediated entry into the human host via angiotensin-converting enzyme II (ACE2) that is expressed in lung tissue, as well as oral and nasal mucosa, kidney, testes, and the gastrointestinal tract. Modulation of ACE2 levels in these gateway tissues may prove a plausible strategy for decreasing disease susceptibility. Cannabis sativa, especially one high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been proposed to modulate gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. Working under the Health Canada research license, we have developed over 800 new Cannabis sativa lines and extracts and hypothesized that high-CBD C. sativa extracts may be used to modulate ACE2 expression in COVID-19 target tissues. Screening C. sativa extracts using artificial human 3D models of oral, airway, and intestinal tissues, we identified 13 high CBD C. sativa extracts that modulate ACE2 gene expression and ACE2 protein levels. Our initial data suggest that some C. sativa extract down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV2 entry into host cells. While our most effective extracts require further large-scale validation, our study is crucial for the future analysis of the effects of medical cannabis on COVID-19. The extracts of our most successful and novel high CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the treatment of COVID-19 as an adjunct therapy. They can be used to develop easy-to-use preventative treatments in the form of mouthwash and throat gargle products for both clinical and at-home use. Such products ought to be tested for their potential to decrease viral entry via the oral mucosa. Given the current dire and rapidly evolving epidemiological situation, every possible therapeutic opportunity and avenue must be considered.
Article
Insect Science
Biology and Life Sciences

Ildar Rakhmatulin

Abstract: More than 700 thousand human deaths from mosquito bites are observed annually in the world. It is more than 2 times the number of annual murders in the world. In this regard, the invention of new more effective methods of protection against mosquitoes is necessary. In this article for the first time, comprehensive studies of mosquito neutralization using machine vision and a 1 W power laser are considered. Developed laser installation with Raspberry Pi that changing the direction of the laser with a galvanometer. We developed a program for mosquito tracking in real. The possibility of using deep neural networks, Haar cascades, machine learning for mosquito recognition was considered. We considered in detail the classification problems of mosquitoes in images. A recommendation is given for the implementation of this device based on a microcontroller for subsequent use as part of an unmanned aerial vehicle. Any harmful insects in the fields can be used as objects for control.
Review
Transplantation
Medicine and Pharmacology

Jun Ueda,

Hideyuki Motohashi,

Yuriko Hirai,

Kenji Yamamoto,

Yasufumi Murakami,

Masanori Fukushima,

Akinori Fujisawa

Abstract:

The World Health Organization declared the coronavirus disease 2019 (COVID-19) pandemic in 2020, following which a global genetic vaccination program has been rapidly implemented as a fundamental solution. However, it has been reported worldwide that the modified mRNAs encoding spike proteins and lipid nanoparticles, which are used as drug delivery systems, not only cause thrombosis and cardiovascular disorders post vaccination, but might also cause diverse diseases involving all organs and systems, including the nervous system. Furthermore, the toxicity and pathogenicity of spike proteins may necessitate defining these proteins as nonbiological infective material. Based on these reports and the abundant evidence that has come to light in the past few years, this paper aims to draw the attention of medical professionals to the various risks associated with transfusion using blood products derived from long COVID patients or from genetic vaccine recipients, and to make proposals regarding specific inspection items, testing methods, regulations, etc. This paper provides insights to address the post-vaccination syndrome and its consequences following such genetic vaccination programs.

Article
Obstetrics and Gynaecology
Medicine and Pharmacology

James A. Thorp,

Claire Rogers,

Michael P. Deskevich,

Stewart Tankersley,

Albert Benavides,

Megan D. Redshaw,

Peter A. McCullough

Abstract: Objectives Assess rates of adverse events (AE) after COVID-19 vaccines experienced by women of reproductive age, focusing on pregnancy and menstruation, using data collected by the US Centers for Disease Control and Prevention (CDC) Vaccine Adverse Events Reporting System (VAERS) database. Design Population-based retrospective cohort study. Setting US and global entries in US Centers for Disease Control and Prevention (CDC) Vaccine Adverse Events Reporting System (VAERS). Participants CDC VAERS entries from January 1, 1998 to June 30, 2022. Interventions None. Main Outcome Measures A proportional reporting ratio analysis is performed using data in the VAERS system comparing adverse events (AE) reported post-COVID-19 vaccines with that of post-Influenza vaccines. Results COVID-19 vaccines, when compared to the Influenza vaccines, are associated with a significant increase in AE with all proportional reporting ratios of > 2.0: menstrual abnormalities, miscarriage, fetal chromosomal abnormalities, fetal malformation, fetal cystic hygroma, fetal cardiac disorders, fetal arrhythmias, fetal cardiac arrest, fetal vascular malperfusion, fetal growth abnormalities, fetal abnormal surveillance, fetal placental thrombosis, low amniotic fluid, preeclampsia, premature delivery, preterm premature rupture of membrane, fetal death/stillbirth, and premature baby death (all p values were much smaller than 0.05). When normalized by time-available, doses-given, or persons-received, all COVID-19 vaccine AE far exceed the safety signal on all recognized thresholds. Conclusions Pregnancy complications and menstrual abnormalities are significantly more frequent following COVID-19 vaccinations than Influenza vaccinations. A worldwide moratorium on the use of COVID-19 vaccines in pregnancy is advised until randomized prospective trials document safety in pregnancy and long-term follow-up in offspring.
Review
Immunology and Allergy
Medicine and Pharmacology

Ari Joffe

Abstract: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the Coronavirus Disease 2019 (COVID-19) worldwide pandemic in 2020. In response, most countries in the world implemented lockdowns, restricting their population’s movements, work, education, gatherings, and general activities in attempt to ‘flatten the curve’ of COVID-19 cases. The public health goal of lockdowns was to save the population from COVID-19 cases and deaths, and to prevent overwhelming health care systems with COVID-19 patients. In this narrative review I explain why I changed my mind about supporting lockdowns. First, I explain how the initial modeling predictions induced fear and crowd-effects [i.e., groupthink]. Second, I summarize important information that has emerged relevant to the modeling, including about infection fatality rate, high-risk groups, herd immunity thresholds, and exit strategies. Third, I describe how reality started sinking in, with information on significant collateral damage due to the response to the pandemic, and information placing the number of deaths in context and perspective. Fourth, I present a cost-benefit analysis of the response to COVID-19 that finds lockdowns are far more harmful to public health than COVID-19 can be. Controversies and objections about the main points made are considered and addressed. I close with some suggestions for moving forward.
Article
Pharmacology and Toxicology
Medicine and Pharmacology

Siti Khaerunnisa,

Hendra Kurniawan,

Rizki Awaluddin,

Suhartati Suhartati,

Soetjipto Soetjipto

Abstract: COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available and investigations regarding COVID-19 treatment are lacking. Liu et al. (2020) successfully crystallised the COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess bioactive compounds found in medicinal plants as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. COVID-19 Mpro was docked with several compounds, and docking was analysed by Autodock 4.2, Pymol version 1.7.4.5 Edu, and Biovia Discovery Studio 4.5. Nelfinavir and lopinavir were used as standards for comparison. The binding energies obtained from the docking of 6LU7 with native ligand, nelfinavir, lopinavir, kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, epicatechin-gallate, zingerol, gingerol, and allicin were -8.37, -10.72, -9.41, -8.58, -8.47, -8.17, -7.99, -7.89, -7.83, -7.31, -7.05, -7.24, -6.67, -5.40, -5.38, and -4.03 kcal/mol, respectively. Therefore, nelfinavir and lopinavir may represent potential treatment options, and kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, and epicatechin-gallate appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use.
Review
Cardiac and Cardiovascular Systems
Medicine and Pharmacology

Nicolas Hulscher,

Roger Hodkinson,

William Makis,

Peter McCullough

Abstract: Background: COVID-19 vaccines have been linked to myocarditis which in some circumstances can be fatal. This systematic review aims to investigate potential causal links between COVID-19 vaccines and death from myocarditis using post-mortem analysis. Methods: We performed a systematic review of all published autopsy reports involving COVID-19 vaccination-related myocarditis through July 3rd, 2023. All autopsy studies that include COVID-19 vaccine-induced myocarditis as a possible cause of death were included, without imposing any additional restrictions. Causality in each case was determined by three independent reviewers with cardiac pathology experience and expertise. Results: We initially identified 1,691 studies and, after screening for our inclusion criteria, included 14 papers that contained 28 autopsy cases. The cardiovascular system was the only organ system affected in 26 cases. In 2 cases, myocarditis was characterized as a consequence from multisystem inflammatory syndrome (MIS). The mean and median number of days from last COVID-19 vaccination until death was 6.2 and 3 days, respectively. Most of the deaths occurred within a week from the last injection. We established that all 28 deaths were causally linked to COVID-19 vaccination by independent adjudication. Conclusions: The temporal relationship, internal and external consistency seen among cases in this review with known COVID-19 vaccine-induced myocarditis, its pathobiological mechanisms and related excess death, complemented with autopsy confirmation, independent adjudication, and application of the Bradford Hill criteria to the overall epidemiology of vaccine myocarditis, suggests there is a high likelihood of a causal link between COVID-19 vaccines and death from suspected myocarditis in cases where sudden, unexpected death has occurred in a vaccinated person. Urgent investigation is required for the purpose of risk stratification and mitigation in order to reduce the population occurrence of fatal COVID-19 vaccine-induced myocarditis.
Article
Medicine and Pharmacology
Medicine and Pharmacology

George Tetz,

Victor Tetz

Abstract: Currently, the world is struggling with the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prion-like domains are critical for virulence and the development of therapeutic targets; however, the prion-like domains in the SARS-CoV-2 proteome have not been analyzed. In this in silico study, using the PLAAC algorithm, we identified the presence of prion-like domains in the SARS-CoV-2 spike protein. Compared with other viruses, a striking difference was observed in the distribution of prion-like domains in the spike protein, since SARS-CoV-2 was the only coronavirus with a prion-like domain found in the receptor-binding domain of the S1 region of the spike protein. The presence and unique distribution of prion-like domains in the SARS-CoV-2 receptor-binding domains of the spike protein is particularly interesting, since although the SARS-CoV-2 and SARS-CoV S proteins share the same host cell receptor, angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 demonstrates a 10- to 20-fold higher affinity for ACE2. Finally, we identified prion-like domains in the α1 helix of the ACE2 receptor that interact with the viral receptor-binding domain of SARS-CoV-2. Taken together, the present findings indicate that the identified PrDs in the SARS-CoV-2 receptor-binding domain (RBD) and ACE2 region that interact with RBD have important functional roles in viral adhesion and entry.
Article
Artificial Intelligence and Machine Learning
Computer Science and Mathematics

Konstantine Arkoudas

Abstract: GPT-4 was released in March 2023 to wide acclaim, marking a very substantial improvement across the board over GPT-3.5 (OpenAI's previously best model, which had powered the initial release of ChatGPT). Despite the genuinely impressive improvement, however, there are good reasons to be highly skeptical of GPT-4's ability to reason. This position paper discusses the nature of reasoning; criticizes the current formulation of reasoning problems in the NLP community and the way in which the reasoning performance of LLMs is currently evaluated; introduces a collection of 21 diverse reasoning problems; and performs a detailed qualitative analysis of GPT-4's performance on these problems. Based on the results of this analysis, the paper argues that, despite the occasional flashes of analytical brilliance, GPT-4 at present is utterly incapable of reasoning.

of 4,079

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

© 2025 MDPI (Basel, Switzerland) unless otherwise stated