Online: 6 December 2021 (15:47:49 CET)
Online: 22 May 2020 (10:48:18 CEST)
Show abstract| Download PDF| Share
Online: 10 July 2024 (05:08:41 CEST)
Show abstract| Download PDF| Share
Online: 15 January 2024 (08:26:40 CET)
Show abstract| Download PDF| Share
Online: 27 November 2023 (11:11:22 CET)
Show abstract| Download PDF| Share
Online: 30 May 2023 (11:33:10 CEST)
Online: 12 March 2021 (23:58:40 CET)
Show abstract| Download PDF| Share
Online: 8 January 2021 (11:45:19 CET)
Online: 15 March 2019 (11:59:47 CET)
Show abstract| Download PDF| Share
Online: 1 September 2018 (17:29:04 CEST)
Show abstract| Download PDF| Share
Online: 6 August 2018 (13:19:14 CEST)
Show abstract| Download PDF| Share
Online: 6 June 2017 (17:52:24 CEST)
Show abstract| Download PDF| Share
Online: 22 October 2024 (11:12:48 CEST)
Show abstract| Download PDF| Share
Online: 25 September 2024 (11:43:56 CEST)
Show abstract| Download PDF| Share
Online: 18 September 2024 (11:16:02 CEST)
Online: 29 April 2024 (10:25:21 CEST)
Show abstract| Download PDF| Share
Online: 30 November 2021 (11:08:18 CET)
Show abstract| Download PDF| Share
Online: 10 August 2016 (16:49:20 CEST)
Show abstract| Download PDF| Share
Online: 15 September 2024 (07:33:08 CEST)
Show abstract| Download PDF| Share
Online: 6 September 2023 (14:28:39 CEST)
Show abstract| Download PDF| Share
Online: 5 September 2023 (07:54:11 CEST)
Show abstract| Download PDF| Share
Online: 8 June 2022 (12:40:07 CEST)
Show abstract| Download PDF| Share
Online: 19 April 2021 (17:08:53 CEST)
Show abstract| Download PDF| Share
Online: 30 July 2020 (10:58:24 CEST)
Show abstract| Download PDF| Share
Online: 24 October 2024 (11:59:31 CEST)
Show abstract| Download PDF| Share
Online: 17 April 2024 (15:14:51 CEST)
Show abstract| Download PDF| Share
Online: 5 July 2023 (12:40:33 CEST)
Show abstract| Download PDF| Share
Online: 8 June 2023 (13:52:38 CEST)
Online: 7 June 2023 (03:22:53 CEST)
Show abstract| Download PDF| Share
Working Paper REVIEW
Online: 10 February 2021 (15:04:19 CET)
Show abstract| Download PDF| Share
Online: 27 January 2021 (15:04:53 CET)
Show abstract| Download PDF| Share
Online: 1 February 2019 (10:22:37 CET)
Show abstract| Download PDF| Share
Online: 30 September 2023 (10:23:06 CEST)
Show abstract| Download PDF| Share
Online: 28 January 2023 (08:38:38 CET)
Online: 15 November 2022 (01:15:14 CET)
Show abstract| Download PDF| Share
Online: 30 July 2024 (09:10:08 CEST)
Show abstract| Download PDF| Share
Online: 15 July 2024 (11:24:52 CEST)
Show abstract| Download PDF| Share
Online: 12 September 2023 (02:50:20 CEST)
Show abstract| Download PDF| Share
Online: 9 June 2021 (15:30:13 CEST)
Online: 12 September 2024 (08:17:35 CEST)
Show abstract| Download PDF| Share
Online: 17 August 2022 (03:53:54 CEST)
Show abstract| Download PDF| Share
Working Paper ARTICLE
Online: 28 May 2021 (12:23:05 CEST)
Show abstract| Download PDF| Share
Online: 8 February 2017 (09:31:07 CET)
Show abstract| Download PDF| Share
Online: 18 July 2023 (09:10:50 CEST)
Show abstract| Download PDF| Share
Online: 21 October 2024 (17:23:25 CEST)
Show abstract| Download PDF| Share
Online: 11 January 2024 (08:14:06 CET)
Show abstract| Download PDF| Share
Online: 27 March 2024 (11:59:51 CET)
Show abstract| Download PDF| Share
Online: 22 September 2023 (09:18:39 CEST)
Show abstract| Download PDF| Share
Online: 2 February 2022 (09:42:40 CET)
Show abstract| Download PDF| Share
Online: 31 January 2024 (11:03:04 CET)
Show abstract| Download PDF| Share
Online: 24 September 2024 (10:18:39 CEST)
Show abstract| Download PDF| Share
Online: 4 July 2024 (05:57:45 CEST)
Show abstract| Download PDF| Share
Online: 15 July 2024 (19:43:22 CEST)
Show abstract| Download PDF| Share
Online: 26 March 2024 (10:07:13 CET)
Show abstract| Download PDF| Share
Online: 31 October 2024 (07:07:25 CET)
Show abstract| Download PDF| Share
Online: 15 July 2024 (19:40:21 CEST)
Show abstract| Download PDF| Share
Subject: Computer Science And Mathematics, Mathematics Keywords: Lorentzian SRT-transformation factors as solutions of oscillation-equations Holger Döring IQ-Berlin-Spandau Germany e-mail:haw-doering@t-online.deAbstract:Shown is the derivation of Lorentz-Einstein k-factor in SRT as an amplitude-term of oscillation-differential equations of second order.This case is shown for classical Lorentz-factor as solution of an equation for undamped oscillation as well as the developed theorem as a second solution for advanced SRT of fourth order with an equation for damped oscillation-states.This advanced term allows a calculation for any velocities by real rest mass.key-words: undamped oscillation; SRT; k-factor; Differential-equation of second order; Einstein-Lorentz; Amplitude-analogy; damped oscillation; developed SRT of fourth order
Online: 11 May 2021 (11:16:44 CEST)
Show abstract| Download PDF| Share
  • Page
  • of
  • 5
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.