Online: 1 March 2019 (12:51:56 CET)
Online: 3 January 2019 (09:34:10 CET)
Show abstract| Download PDF| Share
Online: 18 January 2024 (03:11:33 CET)
Show abstract| Download PDF| Share
Online: 1 June 2023 (05:14:11 CEST)
Show abstract| Download PDF| Share
Online: 16 March 2021 (12:20:50 CET)
Show abstract| Download PDF| Share
Online: 10 December 2020 (10:39:26 CET)
Show abstract| Download PDF| Share
Online: 24 October 2024 (11:30:20 CEST)
Show abstract| Download PDF| Share
Online: 30 September 2024 (14:38:28 CEST)
Show abstract| Download PDF| Share
Online: 4 September 2024 (07:43:11 CEST)
Show abstract| Download PDF| Share
Online: 22 April 2024 (10:17:19 CEST)
Show abstract| Download PDF| Share
Online: 18 April 2024 (08:48:08 CEST)
Show abstract| Download PDF| Share
Online: 4 March 2024 (09:24:19 CET)
Show abstract| Download PDF| Share
Online: 10 October 2023 (02:30:03 CEST)
Show abstract| Download PDF| Share
Preprint DATA DESCRIPTOR | doi:10.20944/preprints202301.0184.v1
Online: 10 January 2023 (11:29:09 CET)
Online: 10 May 2021 (10:58:43 CEST)
Show abstract| Download PDF| Share
Online: 9 April 2020 (10:06:28 CEST)
Show abstract| Download PDF| Share
Online: 29 November 2019 (04:16:05 CET)
Show abstract| Download PDF| Share
Online: 2 August 2024 (09:37:31 CEST)
Show abstract| Download PDF| Share
Online: 20 February 2024 (11:59:35 CET)
Show abstract| Download PDF| Share
Online: 24 May 2023 (04:28:57 CEST)
Show abstract| Download PDF| Share
Online: 2 June 2022 (02:57:49 CEST)
Show abstract| Download PDF| Share
Online: 23 December 2021 (10:12:15 CET)
Show abstract| Download PDF| Share
Online: 7 November 2023 (10:17:40 CET)
Show abstract| Download PDF| Share
Online: 7 June 2023 (12:57:32 CEST)
Show abstract| Download PDF| Share
Online: 23 July 2024 (16:42:03 CEST)
Show abstract| Download PDF| Share
Online: 16 February 2024 (07:47:14 CET)
Show abstract| Download PDF| Share
Online: 16 June 2023 (11:00:41 CEST)
Show abstract| Download PDF| Share
Online: 14 January 2022 (08:31:02 CET)
Show abstract| Download PDF| Share
Online: 31 July 2019 (04:26:11 CEST)
Online: 26 September 2024 (14:45:33 CEST)
Online: 16 January 2023 (01:11:39 CET)
Show abstract| Download PDF| Share
Online: 27 January 2022 (13:57:44 CET)
Show abstract| Download PDF| Share
Online: 3 October 2023 (16:19:34 CEST)
Show abstract| Download PDF| Share
Online: 14 September 2022 (12:08:02 CEST)
Show abstract| Download PDF| Share
Online: 7 October 2023 (09:47:40 CEST)
Show abstract| Download PDF| Share
Online: 14 October 2020 (10:05:22 CEST)
Show abstract| Download PDF| Share
Subject: Computer Science And Mathematics, Mathematics Keywords: Lorentzian SRT-transformation factors as solutions of oscillation-equations Holger Döring IQ-Berlin-Spandau Germany e-mail:haw-doering@t-online.deAbstract:Shown is the derivation of Lorentz-Einstein k-factor in SRT as an amplitude-term of oscillation-differential equations of second order.This case is shown for classical Lorentz-factor as solution of an equation for undamped oscillation as well as the developed theorem as a second solution for advanced SRT of fourth order with an equation for damped oscillation-states.This advanced term allows a calculation for any velocities by real rest mass.key-words: undamped oscillation; SRT; k-factor; Differential-equation of second order; Einstein-Lorentz; Amplitude-analogy; damped oscillation; developed SRT of fourth order
Online: 11 May 2021 (11:16:44 CEST)
Show abstract| Download PDF| Share
  • Page
  • of
  • 3
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.